MA 138 Calculus II with Life Science Applications THIRD MIDTERM	Spring 2023 04/11/2023	Name:
		Sect. #:

Do not remove this answer page — you will return the whole exam. No books or notes may be used. Use the backs of the question papers for scratch paper. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS) or a QWERTY keyboard is permitted. Absolutely no cell phone use during the exam is allowed.

The **first part of the exam** consists of 10 multiple choice questions, each worth 5 points. Record your answers on this page by filling in the box corresponding to the correct answer. For example, if (a) is correct, you must write

Do not circle answers on this page, but please do circle the letter of each correct response in the body of the exam. It is your responsibility to make it CLEAR which response has been chosen. You will not get credit unless the correct answer has been marked on **both** this page **and** in the body of the exam.

The **second part of the exam** consists of five open-response questions and one bonus question. When answering these questions, check your answers when possible. Clearly indicate your answer and the reasoning used to arrive at that answer. *Unsupported answers may receive NO credit*.

GOOD LUCK!

QUESTION	SCORE	OUT OF
Multiple Choice		50 pts
11.		10 pts
12.		10 pts
13.		10 pts
14.		10 pts
15.		10 pts
Bonus.		10 pts
TOTAL		100 pts

Please make sure to list the correct section number on the front page of your exam. In case you forgot your section number, consult the following table:

Sections #	Lecturer	Time/Location			
001–004	Alberto Corso	MWF 10:00 am - 10:50 am, CB 110			
Section #	Recitation Instructor	Time/Location			
001	Kathryn Hechtel	TR 08:00 am - 08:50 am, CB 307			
002 Kathryn Hechtel Tf		TR 09:00 am - 09:50 am, CB 307			
003	Davis Deaton	TR 10:00 am - 10:50 am, CB 307			
004	Davis Deaton	TR 11:00 am - 11:50 am, CB 307			

1. Suppose a linear map $T(\mathbf{x})$ transforms the unit square depicted on the left into the shape on the right.

Which of the following is the 2 × 2 matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for any 2 × 1 vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$?

Possibilities:

(b) $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (d) $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (e) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	(a)	$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$	
(c) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (d) $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (e) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	(b)	$A = \left[\begin{array}{rr} 1 & 0 \\ 1 & 1 \end{array} \right]$	
(d) $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (e) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	(c)	$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$	
(e) $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$	(d)	$A = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right]$	
L 3	(e)	$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right]$	

2. Let $A = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{bmatrix}$ be a 3×3 matrix. Consider the following four vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 0\\1\\2 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \qquad \mathbf{v}_4 = \begin{bmatrix} 1\\1\\4 \end{bmatrix}$$

Which of the following statement is correct?

- (a) \mathbf{v}_1 and \mathbf{v}_3 are eigenvectors of A
- (b) \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of A
- (c) \mathbf{v}_2 and \mathbf{v}_3 are eigenvectors of A
- (d) \mathbf{v}_3 and \mathbf{v}_4 are eigenvectors of A
- (e) None of the above

3. The eigenvalues of the matrix $M = \begin{bmatrix} 0 & 1 \\ -2 & 3 \end{bmatrix}$ are

Possibilities:

- (a) There are no eigenvalues
- (b) $\lambda_1 = -1$ and $\lambda_2 = -2$
- (c) $\lambda_1 = -1$ and $\lambda_2 = 2$
- (d) $\lambda_1 = 1$ and $\lambda_2 = 2$
- (e) $\lambda_1 = 1$ and $\lambda_2 = -2$

4. Find the value of k so that the matrix $\begin{bmatrix} 2 & 1 \\ 5 & k \end{bmatrix}$ has 0 as an eigenvalue.

Possibilities:

- (a) -2.5
- 0 (b)
- (c) 0.4
- (d) 1
- (e) None of the above

5. There is a correlation between the amount of oxygen dissolved in a body of water and the depth of the water: oxygen is most abundant near the surface with lesser amounts at deeper levels. Suppose that the amount of dissolved oxygen is measured at several depths in a lake and the following data are collected:

depth (ft)	dissolved oxygen (mg/L)
2	10.5
10	6.0
20	0.5

We expect a linear relationship between the depth (d) and the dissolved oxygen (O_2) , that is:

$$O_2 = md + b$$

for appropriate values of m and b. Which of the following systems should we solve in order to find the least-squares solution to this linear problem?

Possibilities:

$$\begin{array}{l} \text{(a)} & \left[\begin{array}{c} 3 & 17 \\ 17 & 146.5 \end{array} \right] \left[\begin{array}{c} m \\ b \end{array} \right] = \left[\begin{array}{c} 32 \\ 91 \end{array} \right] \\ \text{(b)} & \left[\begin{array}{c} 146.5 & 17 \\ 17 & 3 \end{array} \right] \left[\begin{array}{c} m \\ b \end{array} \right] = \left[\begin{array}{c} 91 \\ 32 \end{array} \right] \\ \text{(c)} & \left[\begin{array}{c} 3 & 32 \\ 32 & 504 \end{array} \right] \left[\begin{array}{c} m \\ b \end{array} \right] = \left[\begin{array}{c} 17 \\ 91 \end{array} \right] \\ \text{(d)} & \left[\begin{array}{c} 504 & 32 \\ 32 & 3 \end{array} \right] \left[\begin{array}{c} m \\ b \end{array} \right] = \left[\begin{array}{c} 91 \\ 17 \end{array} \right] \\ \text{(e)} & \left[\begin{array}{c} 5 & 21 & 41 \\ 21 & 101 & 201 \\ 41 & 201 & 401 \end{array} \right] \left[\begin{array}{c} m \\ b \end{array} \right] = \left[\begin{array}{c} 91 \\ 17 \end{array} \right]$$

6. Describe the level curves of $f(x,y) = \sqrt{1 + x^2 - y}$.

Possibilities:

- (a) The level curves are circles
- (b) The level curves are straight lines passing through the origin
- (c) The level curves are parabolas with vertices on the *y*-axis
- (d) The level curves are parabolas with vertices on the x-axis
- (e) None of the above

7. Compute the partial derivative of the function

$$f(x, y, z) = e^{1 - x \cos y} + z e^{-1/(1 + y^2)}$$

with respect to x at the point $(1, 0, \pi)$.

Possibilities:

- (a) -1/e
- (b) -1
- (c) 0
- (d) π/e
- (e) π
- 8. (Heat Index) On a hot day, extreme humidity makes us think the temperature is higher than it really is, whereas in very dry air we perceive the temperature to be lower than the thermometer indicates. The National Weather Service has devised the *heat index* to describe the combined effects of temperature and humidity. The heat index I is the perceived air temperature when the actual temperature is T and the relative humidity is H. So I is a function of T and H and we can write I = f(T, H). The following table of values of I is an excerpt from a table compiled by the National Weather Service.

		Relative humidity H (%)								
		50	55	60	65	70	75	80	85	90
(F)	90	96	98	100	103	106	109	112	115	119
e T (92	100	103	105	108	112	115	119	123	128
eratur	94	104	107	111	114	118	122	127	132	137
tempo	96	109	113	116	121	125	130	135	141	146
ctual	98	114	118	123	127	133	138	144	150	157
Å	100	119	124	129	135	141	147	154	161	168

Estimate the rate of change of the heat index with respect to the temperature, that is $\frac{\partial f}{\partial T}$, when the temperature is 96°F and the humidity is 70%

- (a) -3.75
- (b) 3.75
- (c) 0.9
- (d) -0.9
- (e) 0

9. Which of the following is an equation for the tangent plane to

$$f(x,y) = x^2 + 3xy + y^2$$

when $x_0 = -1$ and $y_0 = 2$?

Possibilities:

- (a) z = 8x + 7y + 11
- (b) z = 4x + y + 1
- (c) z = 4x + y 7
- $(\mathsf{d}) \quad z = x + 4y 1$
- (e) z = 4x + y + 3

10. Let $f(x,y) = (x-y)^3 + 2xy + x^2 - y$. Find the linear approximation L(x,y) near the point (1,2).

Possibilities:

- (a) L(x,y) = 2 + 9(x-1) 2(y-2)
- (b) L(x,y) = -2 + 9(x+1) 2(y+2)
- (c) L(x,y) = -2 + 9(x-1) 2(y-2)
- (d) L(x,y) = 2 + 9(x+1) 2(y+2)
- (e) L(x,y) = 2 9(x-1) + 2(y-2)

- **11.** Consider the matrix $A = \begin{bmatrix} 2 & -6 \\ 0 & -1 \end{bmatrix}$. We can show that A has eigenvectors $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - (a)~ Find the corresponding eigenvalues λ_1 and λ_2 of A.

(b) Find coefficients
$$c_1$$
 and c_2 so that $\begin{bmatrix} 11\\4 \end{bmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2.$

(c) Use your above responses to evaluate
$$A^{13}\begin{bmatrix} 11\\4 \end{bmatrix}$$
.

12. Ibuprofen is an over-the-counter anti-inflammatory drug often taken to treat headaches and other painrelated symptoms. Suppose that we expect a linear relationship of the form y = at + b, where y denotes the amount of the drug in an individual's system t hours after taking the recommended dosage. Through experimentation, we obtain the following data of drug concentration versus time elapsed.

time (hr)	concentration (ppm)
1	8
2	6
3	3
4	1

(a) Find a matrix equation that corresponds to the initial linear system that we wish to solve.

(b) Find the matrix equation whose solution is the least-squares solution to the system from part (a).

(c) Find the least-squares model of drug absorption that corresponds to this scenario.

13. (a) (5 pts) Commensalism is a biological relationship between two organisms where one (usually smaller) organism obtains food or other benefits from the other while the (usually larger) organism is unaffected. For example, the remora is a small fish that attaches itself to larger fish for locomotion as well as to feed on the host's leftovers. Suppose that the growth rate of a remora population is given by the function

$$f(x,y) = \ln(y - x^2)$$

where x is the current number of remora and y is the number of viable host fish in the same region.

Find a simplified formula for the level curves f(x, y) = c and describe these curves.

(b) (5 pts) Does the following limit

$$\lim_{(x,y)\longrightarrow(0,0)}\frac{x^2y}{x^4+y^2}$$

exist? Explain.

14. Compute the partial derivatives $g_{\boldsymbol{x}}$ and $g_{\boldsymbol{y}}$ for the function

$$g(x,y) = \frac{3x}{2x - 4y^2}.$$

15. Consider the function

$$f(x,y) = 4 - \sqrt{x^2 + y^2 + 2}$$

whose graph is given in the picture on the right.

(a) Find the z-coordinate z_0 of the point P on the graph of the function z = f(x, y) with x-coordinate $x_0 = 1$ and y-coordinate $y_0 = 1$.

(b) Write the equation of the tangent plane to the graph of the function z = f(x, y) at the point P, as above, with coordinates $x_0 = 1$ and $y_0 = 1$.

(c) Write the linear approximation, L(x, y), of the function f at the point with $x_0 = 1$ and $y_0 = 1$, as above, and use it to approximate f(1.1, 0.9). Compare this approximate value to the exact value f(1.1, 0.9).

Bonus. Consider an animal species that has two life stages: juvenile and adult. Suppose that we count the number of members of this population on a weekly basis. Let J_t denote the number of juveniles at week t and A_t denote number of adults at week t. The relation between the population during two consecutive weeks can reasonably be described as follows

$$J_{t+1} = J_t - mJ_t - gJ_t + fA_t A_{t+1} = A_t - \mu A_t + gJ_t$$
(1)

where m is the fraction of juveniles that dies, g is the fraction of juveniles that becomes adult, f accounts for the newborns, and μ is the fraction of adults that dies.

- (a) Write the matrix form of the system of equations in (1) when m = 0.8, g = 0.1, f = 10, and $\mu = 0.9$.
- (b) Find the eigenvalues and the corresponding eigenvectors associated with the matrix found in part (a).

(c) Compute the long-term ratio of juveniles versus adults in this animal species.

