
Abstract Median survival times and their associated confidence intervals are often
used to summarize the survival outcome of a group of patients in clinical trials with
failure-time endpoints. Although there is an extensive literature on this topic for the
case in which the patients come from a homogeneous population, few papers have
dealt with the case in which covariates are present as in the proportional hazards
model. In this paper we propose a new approach to this problem and demonstrate its
advantages over existing methods, not only for the proportional hazards model but
also for the widely studied cases where covariates are absent and where there is no
censoring. As an illustration, we apply it to the Stanford Heart Transplant data.
Asymptotic theory and simulation studies show that the proposed method indeed
yields confidence intervals and bands with accurate coverage errors.

Keywords Bootstrap Æ Median survival Æ Proportional hazards model Æ
Test-based confidence intervals and bands

1 Introduction

The proportional hazards model of Cox (1972) is a log-linear regression model that
relates the cumulative hazard function L(t|x) associated with a covariate vector x to a
baseline hazard function L(t) via

KðtjxÞ ¼ KðtÞ expðbT xÞ: ð1:1Þ

T. L. Lai (&)
Department of Statistics, Stanford University, Stanford, CA 94305, USA
e-mail: lait@stat.stanford.edu

Z. Su
Department of Applied Mathematics and Statistics, SUNY Stony Brook, NY 11733, USA
e-mail: zhengsu@ams.sunysb.edu

123

Lifetime Data Anal (2006) 12:407–419
DOI 10.1007/s10985-006-9024-y

Confidence intervals for survival quantiles in the Cox
regression model

Tze Leung Lai Æ Zheng Su

Received: 22 December 2005 / Accepted: 6 September 2006 /
Published online: 20 October 2006
� Springer Science+Business Media, LLC 2006



Based on a sample consisting of n observations ðeti; di; xiÞ, where eti ¼ minðti; ciÞ
and di ¼ Ifti�cig is the indicator of whether the actual failure time ti is observed or is
censored by ci, the estimate bb of b is the maximizer of the partial likelihood function

‘ðbÞ ¼
X

n

i¼1

di bTxi � log
X

j:~tj�~ti

expðbTxjÞ
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: ð1:2Þ

Confidence regions for b can be constructed by using the asymptotic normality of
ð�€‘ðbbÞÞ�1=2ðbb � bÞ or the limiting v2 distribution of 2fellðbbÞ � ‘ðbÞg. In many
applications, it is useful to estimate also the median survival time given a subject’s
covariate vector. In particular, by combining bb with Breslow’s (1974) estimate bK of
the baseline cumulative hazard function, Miller and Halpern (1982) used the median
of the distribution function 1� expf�bKð�Þeb̂T xg to estimate median survival, given a
subject’s age that forms the covariate vector x = (age, age2), from the Stanford Heart
Transplant data. Dabrowska and Doksum (1987) and Burr and Doss (1993) subse-
quently studied the problem of constructing confidence intervals and bands for the
median survival time given a subject’s covariates. Letting np (x) denote the pth
quantile of the failure time distribution for a given covariate vector x (so that p ¼ 1

2

corresponds to the median) and bnpðxÞ be the pth quantile of the preceding estimated
distribution function, their approach is based on the approximate normality of
fbnpðxÞ � npðxÞg= bsepðxÞ, or its limiting Gaussian process indexed by x, where bsepðxÞ
denotes the estimated standard error of bnpðxÞ.

A major difficulty with this approach for sample sizes commonly encountered in
practice lies in bsepðxÞ. The variance of the limiting normal distribution of
ffiffiffi

n
p
fbnpðxÞ � npðxÞg involves the baseline hazard function k(t) = (d/dt)L(t). Although

Dabrowska and Doksum (1987, p. 802) cite Tsiatis (1981) and Andersen and Gill
(1982) in claiming consistency of their proposed estimator of the limiting variance,
Tsiatis, Anderson and Gill have only established consistency for Breslow’s estimate
of L but not of the derivative k. Burr and Doss (1993) make use of kernel smoothing
of bK to estimate k, and instead of applying the large-sample theory of
fbnpðxÞ � npðxÞg= bsepðxÞ directly to construct confidence intervals for np(x), they use it
to provide a theoretical justification of the bootstrap-t method to construct confi-
dence intervals. However, as pointed out by Efron and Tibshirani (1993, Sect.12.6),
the bootstrap-t method requires stable estimates of standard errors for it to work
well in practice. Therefore the difficulties in estimating the standard error of bnpðxÞ
also cause difficulties with bootstrap-t confidence intervals for np(x).

In fact, even without censoring and covariate effects so that the problem reduces
to that of confidence intervals for the pth quantile np of a distribution function based
on a sample of independent and identically distributed survival times t1; . . . tn with
common density function f that has a consistent kernel estimator bf , the limiting
normal distribution of

bf ðbnpÞfn=½pð1� pÞ�g1=2ðbnp � npÞ ð1:3Þ

is seldom used in constructing confidence intervals for np. Besides issues with finite-
sample performance of the density estimator bf ðbnpÞ, the adequacy of the linear
approximation f ðnpÞðbnp � npÞ to FðbnpÞ � FðnpÞ used to derive the asymptotic nor-
mality of bnp � np (where F is the distribution function whose derivative is f ) is

408 Lifetime Data Anal (2006) 12:407–419

123



problematic when bnp is not sufficiently near np. Instead, a standard nonparametric
confidence interval is of the form tðk1Þ\np\tðk2Þ, where the t(i) denote the order
statistics of the sample and k1 < k2 are integers such that

Pftðk1Þ � np\tðk2Þg ¼ Pfk1 � Biðn; pÞ\k2g � 1� 2a; ð1:4Þ

the lower bound 1 – 2a in (1.4) may not be attainable because of the discreteness of
the binomial distribution Bi(n,p). As shown by Efron (1979) and Chen and Hall
(1993, p. 1169), bootstrap percentile confidence intervals and empirical likelihood
confidence intervals (obtained by inverting empirical likelihood ratio tests) for np are
of this form; see also Efron and Tibshirani (1993, p. 174). Chen and Hall (1993) also
showed that the inability of (1.4) to attain 1 – 2a with an O(n–1) error due to the
discreteness of the binomial distribution can be overcome by using a smoothed
version of empirical likelihood. An alternative method to achieve a coverage
probability of 1 – 2a + O(n–1) was proposed by Beran and Hall (1993) who used
convex combinations of sample quantiles to develop interpolated confidence inter-
vals. Recently Ho and Lee (2005) made use of smoothed bootstrap iterations to
achieve more accurate one-sided coverage errors of the bootstrap percentile inter-
val. Their method, however, is very computationally intensive and involves an
additional layer of bootstrapping to determine the bandwidth used to smooth the
empirical distribution.

For censored survival data without covariates, Li et al. (1996) made use of
empirical likelihood to construct confidence bands for np, jointly in p1 £ p £ p2. Their
results on coverage probabilities are based on weak convergence and do not provide
convergence rates of the kind in Chen and Hall (1993). They have, however, not
smoothed the empirical likelihood function, nor have they compared the empirical
likelihood approach with other test-based methods to construct confidence intervals
for np when the ti are subject to censoring. These alternative test-based intervals date
back to Brookmeyer and Crowley (1982) who invert a generalized sign test, leading
to an approximate 1 – 2a confidence set of the form

ft : jbSðtÞ � 1=2j � z1�abrðtÞg ð1:5Þ

for the median n1/2, where bSðtÞ is the Kaplan–Meier estimator of the survival
function, brðtÞ is the estimated standard error of bSðtÞ and zq denotes the qth quantile
of the standard normal distribution. Instead of using the normal approximation,
Strawderman et al. (1997) use Edgeworth expansions for the Studentized cumulative
hazard function to derive more accurate test-based confidence limits for np.

In this paper we develop a new method to construct confidence intervals and
confidence bands for the quantile np(x) in the proportional hazards model (1.1).
Unlike the methods of Dabrowska and Doksum (1987) and Burr and Doss (1993)
that use fbnpðxÞ � npðxÞg= bsep as an approximate pivot, we use a test-based approach,
using bKðtjxÞ to test if KðtjxÞ ¼ logðp�1Þ, where bKðtjxÞ ¼ bKðtÞ expðbbTxÞ and bKðtÞ is
Breslow’s estimator of the baseline cumulative hazard function L(t). Instead of
using the normal approximation or its second-order refinement as in Strawderman
et al. (1997) to find the quantiles of the test statistic, we use the bootstrap
method to evaluate the quantiles of an approximate pivot obtained by Studen-
tizing the test statistic. The details are described in Sect. 2 which also extends this
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approach to confidence bands for npðxÞ, jointly in x belonging to some given set
K. The advantages of the proposed procedure are demonstrated in the asymptotic
theory in Sect. 2 and the simulation studies in Sect. 3. In Sect. 3 we also apply
the proposed methods to construct confidence intervals for median survival given
a patient’s covariates from the Stanford Heart Transplant data, and compare our
results with those of Burr and Doss (1993). Section 4 concludes with some
remarks and further discussion.

2 Methodology

2.1 A new test-based bootstrap confidence interval

In this section we propose a new test-based confidence interval for the pth quantile
np(x) given a subject’s covariate vector x in the Cox model, and provide an associ-
ated algorithm for computing the endpoints of the interval. An obvious general-
ization of the Brookmeyer–Crowley confidence interval (1.5) for n1/2 to np(x) in the
Cox model is

ft : jbSðtjxÞ � ð1� pÞj � z1�abrðtjxÞg; ð2:1Þ

where br2ðtjxÞ is the asymptotic variance of

bSðtjxÞ ¼ expf�bKðtÞebb
T xg; ð2:2Þ

in which bb is the maximizer of (1.2) and bK is Breslow’s (1974) estimate of the
baseline cumulative hazard function based on ð~ti; di; xiÞ; 1 � i � n. The asymptotic
variance formula was derived by Tsiatis (1981) using the delta method; see (2.6)
below for its consistent estimate br2ðtjxÞ. Note that this asymptotic variance is a
nonlinear function of the asymptotic covariance matrix of ðbKðtÞ � KðtÞ; ðbb � bÞTxÞ.
Although bSðtjxÞ takes values in [0, 1], ðbb � bÞTx does not have such constraints and
its variance in finite samples can be substantial. Moreover, the normal approxima-
tion to jbSðtjxÞ � SðtjxÞj=brðtjxÞ used in (2.1) may be inadequate when the sample size
is not large enough; in particular, its symmetry about S(t|x) fails to incorporate
skewness that is especially relevant for censored data.

Instead of using bSðtjxÞ � ð1� pÞ as the test statistic, we use the logarithmic
transformation to transform it into bKðtjxÞ � logð1� pÞ�1. An advantage of this
transformation is that unlike bSðtjxÞ, bKðtjxÞ is no longer constrained to belong to [0, 1]
and therefore the variability due to ðbb � bÞTx in its asymptotic variance formula can
be more compatible with its magnitude. Another advantage is that the asymptotic
variance of bSðtjxÞ involves further linear approximation around bKðtjxÞ. In fact, after
deriving the asymptotic variance v(t|x) of

bKðtjxÞ ¼ bKðtÞ expðbbTxÞ ð2:3Þ

from the asymptotic covariance matrix of ðbKðtÞ � KðtÞ; ðbb � bÞTxÞ, Tsiatis (1981)

used it to derive the asymptotic variance of bSðtjxÞ via the nonlinear transformation

bSðtjxÞ ¼ e�
bKðtjxÞ. Letting xi ¼ ðxi1; . . . ; xikÞT and a ¼ ða1; . . . ; akÞT , define
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WðtÞ ¼
X

j:~tj�t

expðbbTxjÞ; WlðtÞ ¼
X

j:~tj�t

xjl expðbbTxjÞ;

Qlðt; aÞ ¼
X

i:~ti�t

difWlð~tiÞ=Wð~tiÞ � alg=Wð~tiÞ;
ð2:4Þ

and Qðt; aÞ ¼ ðQ1ðt; aÞ; . . . ;Qkðt; aÞÞT . Replacing the unknown parameters in v(t|x)
by their consistent estimates yields

bvðtjxÞ ¼ e2bbT x
X

i:~ti�t

di=W2ð~tiÞ þ ðQðt; xÞÞTð�€lðbbÞÞ�1Qðt; xÞ

8

<

:

9

=

;

; ð2:5Þ

which in turn yields

br2ðtjxÞ ¼ ðbSðtjxÞÞ2vðtjxÞ; ð2:6Þ

by applying the delta method to the transformation bSðtjxÞ ¼ e�
bKðtjxÞ; see Tsiatis (1981).

Instead of the normal quantiles z1-a and za (= – z1-a) used in (2.1), we approxi-
mate the ath and (1 – a)th quantiles ca(t) and c1-a(t) by the quantiles bcaðtÞ and bc1�aðtÞ
of the bootstrap distribution of fbKðtjxÞ � KðtjxÞg=bv1

2ðtjxÞ. Define the test-based
confidence set

T ¼ ft : bcaðtÞ � ½bKðtjxÞ � logð1� pÞ�1�=bv1
2ðtjxÞ � bc1�aðtÞg ð2:7Þ

for the pth quantile np(x) at a given covariate vector x.

2.2 Asymptotic theory

When there are no covariates, Lai and Wang (1993) have derived Edgeworth
expansions for the sampling distribution and also for the bootstrap distribu-
tion of fbKðtÞ � KðtÞg=bv1

2ðtÞ. In the Cox regression model with univariate covari-
ates, Gu (1992) has derived an Edgeworth expansion, with o(n–1/2) error,

for Z :¼ ð�€lðbbÞÞ1=2ðbb � bÞ and also for its bootstrap counterpart Z� :¼
ð�€l�ðbb�ÞÞ1=2ðbb� � bbÞ under certain regularity conditions; his arguments can be readily
extended to multidimensional covariates. His derivation involves showing that Z and
Z* are asymptotic U-statistics (see Sect. 2 of Lai and Wang 1993) and applying
Helmers’ (1991) result for U-statistics. Since Breslow’s estimate of the baseline

hazard function has the form bKðtÞ ¼
P

i:~ti�tfdi=
P

j:~tj�~ti
expðbbTxjÞg, arguments similar

to those in Example 1 of Lai and Wang (1993) can be used to show that bKðtÞ � KðtÞ is

an asymptotic U-statistic. Since bKðtjxÞ ¼ e
bbT x
bKðtÞ, arguments similar to those in the

proof of Lemma 4.4 of Gu (1992) and in Example 2 of Gross and Lai (1996) can be
used to prove that fbKðtjxÞ � KðtjxÞg=bv1

2ðtjxÞ is an asymptotic U-statistic that has an
Edgeworth expansion with o(n–1/2) error; the o(n–1) error in Lai and Wang (1993) and
Gross and Lai (1996) requires stronger assumptions than those in Gu (1992).

As in Gu (1992), we assume here the following regularity conditions:

(A1) (xi, ti, ci) are i.i.d., xi is bounded, and ti and ci are conditionally independent
given xi.
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(A2) L has a continuous derivative k.
Moreover, following Gu (1992), we assume that ibi < B for some known B and that
(A3) Pf~ti � sg[0
for some known s > np(x), and redefine (1.2) by

‘ðbÞ ¼
X

i:~ti�s

di bTxi � log
X

j:~tj�~ti

expðbTxjÞ

0

@

1

A

8

<

:

9

=

;

;

so that bb is the maximizer of this modification of (1.2) within the bounded set
fb :k b k� Bg. Since s[npðxÞ, we can also modify the confidence set T, defined by
(2.7), by restricting it within ft : t � sg so that the results of Lai and Wang (1993) on
asymptotic U-statistics and Edgeworth expansions can be applied to bKðtÞ � KðtÞ for
every t2T. In addition, assume as in Gu (1992) that

(A4)
R s

0 fa2ðtÞ � a1ðtÞ aT
1 ðtÞ=a0ðtÞgkðtÞ dt is positive definite,

where akðtÞ¼ EðxkebT xIf~t�tgÞ for k = 0, 1, 2, with x0 = 1 and x2 = xxT.

Under these assumptions, not only does fbKðtjxÞ � KðtjxÞg=v̂
1
2ðtjxÞ have an

Edgeworth expansion with o(n–1/2) error, but the coefficients of this Edgeworth
expansion also differ from those of the bootstrap counterpart fbK�ðtjxÞ�
bKðtjxÞg=bv�1

2ðtjxÞ by op(n–1/2) by standard arguments; see Theorem 3.2 of Gu
(1992). Hence

bcaðtÞ � caðtÞ ¼ opðn�1=2Þ; bc1�aðtÞ � c1�aðtÞ ¼ opðn�1=2Þ ð2:8Þ

for every fixed t. Applying (2.8) and an argument similar to that of Hall (1992, Sect.
5.3) then yields from (2.7) that

PfnpðxÞ 2 Tg ¼ PfbcaðnpðxÞÞ � ½bKðnpðxÞjxÞ � KðnpðxÞjxÞ�=bv
1
2ðnpðxÞjxÞ � bc1�aðnpðxÞÞg

¼ 1� 2aþ oðn�1=2Þ: ð2:9Þ

2.3 Computation of confidence limits

The set (2.7) may not be an interval, as has already been noted by Brookmeyer and
Crowley (1982, p. 32) for their test-based confidence set (1.5) when there are no
covariates. In practice, it often suffices to give only the upper and lower limits of
(2.7), thereby obtaining a confidence interval. Let q = a or 1 – a. Note that for fixed
x, the cumulative hazard function bK is a step function with jumps at the uncensored
(di = 1) observations ~ti, and so is the function bv. The jumps at the uncensored ~ti’s also
cause discontinuities of bcq at these points. Let ½eKð�jxÞ � logð1� pÞ�1�=ev1

2ð�jxÞ � ecqð�Þ
denote the modification of ½bKð�jxÞ � logð1� pÞ�1�=bv1

2ð�jxÞ � bcqð�Þ that linearly
interpolates between the corresponding values at two adjacent uncensored ~ti’s.

Suppose the covariates xi are independent and identically distributed, as is often the
case in randomized clinical trials. Then the bootstrap distribution of the asymptotic
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pivot fbKðtjxÞ � KðtjxÞg=ðbvðtjxÞÞ
1
2 can be evaluated by resampling from fð~ti; di; xiÞ :

1 � i � ng to obtain B bootstrap samples fð~t�i ; d�i ; x�i Þb; 1 � i � ng; 1 � b � B. At each
given value of t that will be specified below, x�bðtÞ :¼ fbK�bðtjxÞ � bKðtjxÞg=ðbv�bðtjxÞÞ

1
2 is

computed from the bth bootstrap sample, and the ath and (1 – a)th quantiles of
fx�1ðtÞ; . . . ;x�BðtÞg are computed to yield bcaðtÞ and bc1�aðtÞ. We can use the following
iterative procedure to choose the values of t, belonging to the ordered set U of
uncensored eti’s, at which bcaðtÞ or bc1�aðtÞ is computed. For definiteness, we consider
bcaðtÞ. The objective of the iterative procedure is to solve the equation g(t) = 0, where

gðtÞ ¼ feKðtjxÞ � logð1� pÞ�1g=ev1
2ðtjxÞ � ecaðtÞ: ð2:10Þ

Let a be the smallest and b be the largest element of U. With g(a) < 0 and g(b) > 0,
we can use the bisection method, to find two adjacent elements of U where g changes
sign. Then we either linearly interpolate between these two points to find the
solution of g(t) = 0 or simply take the larger element to be the confidence limit. Note
that this procedure can also be used to compute test-based bootstrap confidence
intervals for the quantiles np in the absence of covariates and also in the case of
complete i.i.d. observations, which we study in Sect. 3.1.1.

Burr and Doss (1993) use another resampling scheme under the assumption that
the censoring variables ci have the same distribution function C. Let bC be the

Kaplan–Meier estimate of C. A bootstrap sample is of the form

fð~t�i ; d�i ; xiÞ : 1 � i � ng, where ~t�i ¼ minðt�i ; c�i Þ and d�i ¼ Ift�
i
�c�

i
g, in which ci

* is gen-

erated from bC and ti
* is generated from bSð�jxiÞ independently of ci

*. This resampling
scheme does not need the xi to be identically distributed but assumes the ci to be
identically distributed instead.

2.4 Extension to confidence bands

Let K be a compact subset of the covariate space. Noting that
f
ffiffiffi

n
p
ðbnpðxÞ � npðxÞÞ; x 2 Kg converges weakly to a Gaussian process indexed by x2K

as n!1, Burr and Doss (1993) used

ffiffiffi

n
p

max
x2K
jbnpðxÞ � npðxÞj= bsepðxÞ ð2:11Þ

as an approximate pivot to construct bootstrap confidence bands for {np(x), x2K}.
We can also modify the approach in Sect. 2.1 to construct test-based bootstrap
confidence bands as follows. Let da denote the ath quantile of the distribution of

min
x2K
½bKðnpðxÞjxÞ � logð1� pÞ�1�=bv1

2ðnpðxÞjxÞ; ð2:12Þ

noting that KðnpðxÞjxÞ ¼ logð1� pÞ�1. We can estimate da by the ath quantile bda of
the bootstrap distribution of minx2K½bK�ðbnpðxÞjxÞ � bKðbnpðxÞjxÞ�=ðbv�ðbnpðxÞjxÞÞ

1
2; see

the last two paragraphs of Sect. 2.1. Similarly use the bootstrap quantile bd01�a to
estimate the (1 – a)th quantile d01�a of

max
x2K
½bKðnpðxÞjxÞ � logð1� pÞ�1�=bv1

2ðnpðxÞjxÞ: ð2:13Þ
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With the same notation as that in (2.7), let Tx ¼ ft : bda � ½eKðtjxÞ � logð1� pÞ�1�=
ev

1
2ðnpðxÞjxÞ � bd01�ag. Then {Tx, x2K} is a confidence band for {np(x), x2K} satisfying

PfnpðxÞ 2 Tx for all x 2 Kg
¼Pfbda � min

x2K
½eKðnpðxÞjxÞ � logð1� pÞ�1�=ev1

2ðnpðxÞjxÞ;

bd01�a � max
x2K
½eKðnpðxÞjxÞ � logð1� pÞ�1�=ev1

2ðnpðxÞjxÞg ¼ 1� 2aþOðn�1=2Þ; ð2:14Þ

under the same regularity conditions as those for (2.9).

3 Numerical examples

3.1 Simulation studies

This subsection contains simulation studies of the coverage errors of the test-based
confidence set (2.7) with p ¼ 1

2 and compares them with those of Dabrowska and
Doksum (1987) and Burr and Doss (1993). While Dabrowska and Doksum have
described their procedure explicitly for us to implement in the comparative study in
Sect. 3.2, Burr and Doss (1993, p. 1333) ‘‘use the biweight kernel and choose bin
width subjectively’’ in the numerical studies of their procedure, for which there are
many possible choices of the kernel and the smoothing parameter in estimating k. To
simplify matters, we assume k to be known in the estimation of bsepðxÞ (see the first
two paragraphs of Sect. 1) for their bootstrap-t confidence intervals; this circumvents
issues concerning how the bandwidth and kernel should be chosen for their proce-
dure to compare with ours which does not require kernel smoothing. In Sect. 3.1.1
we simplify the simulation study even further by considering the case in which
covariates are absent so that the problem reduces to interval estimation of the
median based on a sample of i.i.d. ti when there is no censoring, or on ðeti; diÞ when
there are censoring variables ci.

3.1.1 Case without covariates

We first consider the case where there is no censoring. In this case, a test-based
confidence set of the type (2.7) can be re-expressed in the form

ft : bwaðtÞ �
ffiffiffi

n
p
½bF ðtÞ � 1=2�=½bF ðtÞð1� bF ðtÞÞ�1=2 � bw1�aðtÞg; ð3:1Þ

where wq(t) denotes the qth quantile of the Studentized variate
ffiffiffi

n
p
½bF ðtÞ � FðtÞ�=

½bF ðtÞð1� bF ðtÞÞ�1=2 and bwqðtÞ denotes the estimate of wq(t) via bootstrap resampling.
The coverage errors of the confidence limits of (3.1) computed by the algorithm in
Sect. 2.3 are given in Table 1a,b for n = 30, 100 and for the three distributions
considered in the simulation study of Ho and Lee (2005): standard normal F, double
exponential with density function f ðxÞ ¼ e�jxj=2, and lognormal F which is the dis-
tribution function of exp{N(0,1)}. As in Ho and Lee, a = 5% and each result is based
on 1,000 simulations. Moreover, 1,000 bootstrap samples are used to compute the
bootstrap quantiles.
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Following Burr and Doss (1993), a bootstrap-t confidence interval in the present
setting without censoring and covariates uses fmedðbF Þ �medðFÞg= bse as an
approximate pivot and bootstrap resampling to estimate its ath and (1 – a)th

quantiles. As pointed out in (1.3), the asymptotic standard error is f2
ffiffiffi

n
p

f ðn1=2Þg�1

and its estimate requires a density estimator bf . To simplify matters in comparing this
method with (3.1), we consider a more favorable version of the method that can use
the true f to define bse ¼ f2

ffiffiffi

n
p

f ðbn1=2Þg�1. Parts (a) and (b) of Table 1 consider these
bootstrap-t (abbreviated by Boot-t) confidence intervals. Also given for comparison
are the coverage errors, taken from Table 3 of Ho and Lee (2005), of the confidence
intervals of Ho and Lee, Beran and Hall (1993, abbreviated by BeHa) and Chen and
Hall (1993) who construct the confidence intervals by using smoothed empirical
likelihood (abbreviated by SmoEL). The results of Table 1a,b show that (3.1) and
the Beran–Hall confidence limits have coverage errors that are close to the nominal
value of 5%. The smoothed empirical likelihood and Ho–Lee confidence limits also
perform well except for a couple of cases. In contrast, the bootstrap-t confidence
intervals based on the approximate pivot fmedðbF Þ �medðFÞg= bse have coverage
errors that are markedly different from 5% in most cases.

Parts (c) and (d) of Table 1 consider the case where there are independent
censoring variables ci that have a common distribution C which is assumed to be
exponential with intensity parameter 1/4 or 1/2. The three baseline survival functions
considered are Lognormal, Exponential with intensity parameter 1, and Weibull
with scale parameter 1 and shape parameter 0.7. The observations are

Table 1 Coverage errors (in %) of confidence intervals for median of three distributions:
Lognormal, Exponential (or Double Exponential when there is no censoring), Weibull (or
Normal when there is no censoring)

Interval Lognormal (Double) Exponential (Normal) Weibull

Lower Upper Total Lower Upper Total Lower Upper Total

(a) n = 30, no censoring
(3.1) 4.5 5.0 9.5 5.0 4.4 9.4 4.5 5.0 9.5
BeHa 5.1 5.0 10.1 5.9 4.9 10.8 5.1 5.0 10.1
SmoEL 5.2 5.5 10.7 6.2 5.7 11.9 4.9 5.7 10.6
Ho-Lee 3.6 6.6 10.2 4.0 5.4 9.4 3.7 7.3 11.0
Boot-t 2.6 8.9 11.5 2.8 3.0 5.8 5.4 5.5 10.9

(b) n = 100, no censoring
(3.1) 5.1 5.0 10.1 5.1 4.5 9.6 5.0 5.2 10.2
BeHa 4.6 4.9 9.5 4.6 4.3 8.9 4.6 5.0 9.6
SmoEL 5.3 5.5 10.8 5.3 4.2 9.5 4.9 5.6 10.5
Ho-Lee 4.9 5.9 10.8 4.2 5.3 9.5 5.1 6.0 11.1
Boot-t 3.0 9.4 12.4 2.9 3.6 6.5 4.5 6.1 10.6

(c) n = 60, C~ Exp(1/4)
(3.2) 5.4 3.5 8.9 4.8 4.5 9.3 4.3 4.5 8.8
BrCr 6.0 6.6 12.6 6.0 5.8 11.8 5.7 5.7 11.4
SPW 7.3 3.7 11.0 5.8 4.6 10.4 6.3 4.5 10.8
Boot-t 1.8 11.9 13.7 2.1 7.0 9.1 2.0 10.1 12.1

(d) n = 100, C~ Exp(1/2)
(3.2) 5.1 4.0 9.1 4.6 5.8 10.4 5.1 4.1 9.2
BrCr 6.1 5.8 11.9 5.4 5.8 11.2 6.1 4.8 10.9
SPW 6.9 3.9 10.8 6.2 4.7 10.9 5.9 3.3 9.2
Boot-t 2.0 10.2 12.2 2.8 6.5 9.3 2.5 8.8 11.3
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ðeti; diÞ; i ¼ 1; . . . ; n. Let brðtÞ be the estimated standard error of bSðtÞ given by
Greenwood’s formula; see Andersen et al. (1993, p. 258). Since we do not have to
estimate b and to adjust for the variability of bb � b here, we can use bSðtÞ � 1=2 as in
the Brookmeyer–Crowley interval (1.5) (abbreviated by BrCr) instead of trans-
forming it to bKðtÞ � log 2 as in (2.7). This leads to a test-based confidence set of
the form

ft : bwaðtÞ � ½bSðtÞ � 1=2�=brðtÞ � bw1�aðtÞg; ð3:2Þ

which we implement by the procedure in Sect. 2.3. Besides (1.5) and (3.2), parts (c)
and (d) of Table 1 also consider the bootstrap-t confidence intervals (abbreviated by
Boot-t) of the type considered by Burr and Doss (1993). Since there are no cova-
riates, the asymptotic standard error of bn1=2 � n1=2 is simpler than that in their
Theorem 1. It is equal to rðn1=2Þ=f ðn1=2Þ, where r2ðtÞ is the asymptotic variance of
bSðtÞ. Assuming f to be known, the estimated standard error of bn1=2 � n1=2 is
bse ¼ brðbn1=2Þ=f ðbn1=2Þ, where brðtÞ is the estimated standard error of bSðtÞ given by
Greenwood’s formula; see Andersen et al. (1993, pp. 257, 258, 276 which assume ti
to be nonnegative and use r2ðtÞ to denote the asymptotic variance of bSðtÞ=SðtÞ
instead).

Strawderman et al. (1997) gave a review of confidence intervals for np based on
censored observations in the earlier literature and proposed a new test-based con-
fidence interval for np, which uses an Edgeworth expansion for ½bKðtÞ � KðtÞ�=bv1

2ðtÞ to
improve the normal approximation and which they denote by I2. Their simulation
study shows that I2, which Table 1 refers to as SPW (abbreviation for the authors),
‘‘is superior to all others considered in terms of maintaining coverage accuracy.’’ The
results in Table 1c,d, however, contain cases where SPW has worse coverage accu-
racy than the Brookmeyer–Crowley confidence limits, and show that (3.2) has better
coverage accuracy. Parts (c) and (d) of Table 1 also show that the bootstrap-t
confidence intervals based on the approximate pivot ðbn1=2 � n1=2Þ= bse have poor
coverage accuracy.

3.1.2 Case with covariates

Consider the proportional hazards model (1.1) in which the baseline survival func-
tion is that of a Weibull distribution with scale parameter 1 and shape parameter h.
The covariates xi are independent and uniformly distributed in [0, 1] and b = 1. The
censoring times ci are i.i.d. exponential with intensity parameter 0.5, 1 or 2. The
sample size is 80. Table 2 considers three different values of the Weibull shape
parameter h and gives the censoring proportion pa for each value a of the intensity
parameter of the exponential censoring distribution. Besides the coverage errors of
our proposed test-based bootstrap confidence intervals, Table 2 also gives those of
the confidence intervals of Dabrowska and Doksum (in brackets) and those of the
test-based confidence intervals using the normal approximation (in parentheses).
Each result is based on 1,000 simulations, and 1,000 bootstrap samples are used to
compute the bootstrap quantiles for our proposed procedure. Table 2 shows that the
coverage errors of our proposed confidence intervals are close to the nominal value
a = 5% but those using the normal approximation (instead of the bootstrap) or the
Dabrowska–Doksum method differ markedly from 5%.
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Besides the confidence set (2.7), this simulation study also considers the coverage
errors of 90% confidence bands of the type in Sect. 2.3 for .25 £ x £ .75. The
coverage errors (in %) under the three censoring patterns are 10.5, 9.6, 9.2 for h = .7;
11.4, 10.5, 9.4 for h = 1; and 11.1, 10.5, 10.0 for h = 1.3, in close agreement with the
nominal coverage error of 10%.

3.2 Application to Stanford Heart Transplant Data

We illustrate the methods in Sect. 2.1 for constructing confidence intervals on the
1980 version of the Stanford Heart Transplant (SHT) data as given in Miller and
Halpern (1982), who fitted a proportional hazards regression model to the data
involving 152 patients that had survived at least 10 days, and who chose quadratic
regression of log10 (survival time in days) on age (in years) as the predictor variable
for the final model. Burr and Doss (1993, p. 1338) have applied their bootstrap-t
method to construct confidence intervals and bands for median survival (days in the
log10 scale) from these data. In addition, they have also used the limiting Gaussian
process for fbn1=2ðxÞ � n1=2ðxÞg= bse1=2ðxÞ to construct confidence intervals and

Table 2 Coverage errors (in %) of (2.7), of its normal approximation counterpart (in parentheses)
and of the Dabrowska–Doksum confidence intervals (in brackets) for median survival

x C~Exp(0.5) C~Exp(1) C~Exp(2)

Lower Upper Total Lower Upper Total Lower Upper Total

(a) h = .7, p0.5 = 22% p1 = 33% p2 = 47%
.25 4.7 5.2 9.9 4.2 5.4 9.6 4.9 4.8 9.7

(8.3) (3.5) (11.8) (7.1) (3.4) (10.5) (8.9) (2.2) (11.1)
[3.3] [3.2] [6.5] [4.1] [2.8] [6.9] [3.2] [4.5] [7.7]

.5 4.1 5.8 9.9 5.8 5.5 11.3 5.1 3.8 8.9
(7.4) (3.8) (11.2) (7.5) (3.9) (11.4) (8.8) (2.4) (11.2)
[4.3] [4.2] [8.5] [3.7] [3.8] [7.5] [4.1] [2.6] [6.7]

.75 5.4 5.1 10.5 5.0 5.4 10.4 4.7 5.6 10.3
(8.1) (2.7) (10.8) (7.8) (2.9) (10.7) (8.2) (1.5) (9.7)
[3.3] [3.3] [6.6] [4.1] [3.2] [7.3] [2.1] [4.4] [6.5]

(b) h = 1, p0.5 = 24% p1 = 38% p2 = 54%
.25 5.3 5.4 10.7 4.9 6.0 10.9 5.4 6.1 11.5

(8.0) (2.9) (10.9) (8.7) (1.9) (10.6) (10.7) (1.9) (12.6)
[3.1] [3.7] [6.8] [2.8] [4.8] [7.6] [2.7] [3.7] [6.4]

.5 5.5 5.3 10.8 5.7 5.1 10.8 5.4 4.9 10.3
(7.0) (1.9) (8.9) (8.3) (3.5) (11.8) (8.0) (3.0) (11.0)
[3.3] [2.9] [6.2] [4.1] [2.5] [6.6] [2.9] [3.8] [6.8]

.75 4.6 5.0 9.6 5.5 5.1 10.6 4.8 5.3 10.1
(8.4) (2.2) (10.6) (9.4) (2.9) (12.3) (10.4) (1.7) (12.1)
[2.9] [4.0] [6.9] [4.0] [3.0] [7.0] [3.2] [4.1] [6.3]

(c) h = 1.3, p0.5 = 25% p1 = 41% p2 = 60%
.25 4.6 5.1 9.7 4.4 5.0 9.4 3.8 6.6 10.4

(8.1) (3.4) (11.5) (10.1) (2.5) (12.6) (11.3) (1.4) (12.7)
[4.0] [2.9] [6.9] [3.4] [2.7] [6.1] [2.5] [3.5] [6.0]

.5 5.3 5.9 11.2 5.1 5.7 10.8 4.6 6.5 11.1
(8.6) (3.6) (12.2) (8.9) (3.0) (11.9) (8.4) (2.6) (11.0)
[3.3] [3.9] [7.2] [3.2] [2.8] [6.0] [3.1] [2.4] [5.5]

.75 5.0 5.3 10.3 5.3 5.4 10.7 4.2 5.5 9.7
(7.1) (1.5) (8.6) (8.4) (2.5) (10.9) (8.6) (1.1) (9.7)
[3.8] [3.1] [6.9] [3.2] [3.6] [6.8] [2.5] [2.4] [4.9]
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confidence bands for n1/2(x), simulating the Gaussian process to determine the half-
width of the band. Their results at 38.5 and 48.7 years of age for 95% simulated
process (SP) and bootstrap-t (Boot) confidence bands and intervals are included in

Table 3. Also given in Table 3 are the test-based ( Tb
bK

) confidence intervals and

bands in Sects. 2.1 and 2.3 that use fbKðtjxÞ � logð1� pÞ�1g=bv1
2ðtjxÞ as the test sta-

tistic. Instead of bKðtjxÞ, an alternative is to use fbSðtjxÞ � ð1� pÞg=brðtjxÞ as pointed

out in the first paragraph of Sect. 2.1, and its associated test-based ( Tb
bS

) confidence

intervals and bands are also given in Table 3 for comparison. Table 3 shows Tb
bK

to

yield somewhat shorter confidence intervals and bands than Tb
bS

. Moreover, Tb
bK

yields markedly shorter confidence bands than SP and Boot. Figure 1 plots the entire

confidence band for Tb
bK

; note that the upper band ends at log10(2878 days). In view

of the interpolation scheme used to evaluate the upper limits of the confidence
intervals and bands in Section 2.1 and 2.3, the value of the upper limit is undeter-
mined if it exceeds the largest uncensored observation. Therefore the entry 7.9+ for

the upper limit of the confidence band Tb
bK

or Tb
bS

in Table 3 indicates that it

exceeds the largest observed survival of 7.9 years, beyond which there are no data to
estimate the hazard function nonparametrically.

Table 3 95% confidence
intervals and bands for
median survival (in years)
from SHT data

Age = 38.5 Age = 48.7

SP Boot Tb
bK

Tb
bS

SP Boot Tb
bK

Tb
bS

Interval L 2.4 2.3 2.8 2.7 .8 .6 .7 .7
U 6.7 5.6 6.4 6.7 2.8 2.2 2.4 2.5

Band L 1.6 1.8 1.7 1.7 .5 .3 .4 .4
U 9.7 9.1 7.9+ 7.9+ 4.8 6.4 3.4 3.8

10 20 30 40 50 60

1.5

2

2.5

3

3.5

Fig. 1 95% confidence bands for the median survival time of the SHT data. The solid curve
represents the estimate of median survival time (days in the log10 scale) as a function of age (in
years)
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4 Discussion

An important ingredient in the test-based confidence intervals/bands developed herein
for survival quantiles in the Cox regression model is the use of bootstrap quantiles to
approximate the quantiles of fbKðtjxÞ � KðtjxÞg=bv1

2ðxÞ, instead of using the normal
approximation (or Edgeworth expansions) as in previous works on test-based confi-
dence intervals for np (in the absence of covariates) from censored survival data. A
novelty here is that we work with bKðtjxÞ � logð1� pÞ�1, instead of bSðtjxÞ � ð1� pÞ that
has been used by Brookmeyer and Crowley (1982) and subsequent authors for the case
without covariates. In the presence of covariates, there is additional variability due to
the estimation of the regression parameter b and it is useful to transform bSðtjxÞ, which is
constrained to belong to [0, 1], to the unconstrained bKðtjxÞ � logð1� pÞ�1. This
transformation often leads to shorter confidence intervals. Another useful ingredient
for implementation is the interpolation scheme in Sect. 2.3. Beran and Hall (1993) have
used similar interpolation ideas to circumvent the discreteness of the binomial distri-
bution in constructing confidence intervals for np from sample quantiles when there are
no covariates and no censoring.
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