The Gaussian coefficient revisited
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Abstract

We give new ¢-(1+4¢)-analogue of the Gaussian coefficient, also know as the ¢g-binomial which,
like the original g-binomial m o is symmetric in k and n — k. We show this ¢-(1 + ¢)-binomial
is more compact than the one discovered by Fu, Reiner, Stanton and Thiem. Underlying our
g-(1 + g)-analogue is a Boolean algebra decomposition of an associated poset. These ideas are
extended to the Birkhoff transform of any finite poset. We end with a discussion of higher
analogues of the g-binomial.
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1 Introduction

Inspired by work of Fu, Reiner, Stanton and Thiem [2], Cai and Readdy [1] asked the following
question. Given a combinatorial g-analogue

X(g) = ¢"™,

weX

where X is a set of objects and a(-) is a statistic defined on the elements of X, when can one find
a smaller set Y and two statistics s and ¢ such that

X(g)=>_¢™ (14¢)"™.

weyY

Such an interpretation is called an ¢-(1 + ¢)-analogue. Examples of ¢-(1 + ¢)-analogues have been
determined for the ¢g-binomial by Fu, Reiner, Stanton and Thiem [2], and for the ¢-Stirling num-
bers of the first and second kinds by Cai and Readdy [1], who also gave poset and homotopy
interpretations of their ¢-(1 + ¢)-analogues.
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In 1916 MacMahon [3, 4, 5] observed that the Gaussian coefficient, also known as the ¢g-binomial
coefficient, is given by
|: :| Z qan w)
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Here Q,, = &(0"%,1%) denotes all permutations of the multiset {07, 1%}, that is, all words
w = w; ---wy, of length n with n — k zeroes and k ones, and inv(-) denotes the inversion statistic
defined by inv(wiws - -wyn) = [{(4,7) : 1 < i < j < n,w; > w;}|. Fuet al defined a subset
Q;L & € Q1 and two statistics a and b such that

q
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In this paper we will return to the original study by Fu et al. of the Gaussian coefficient. We
discover a more compact ¢-(1 + ¢)-analogue which, like the original Gaussian coefficients, is also
symmetric in the variables k£ and n — k; see Corollary 2.6 and Theorem 3.5. This symmetry was
missing in Fu et al.’s original ¢-(1 + ¢)-analogue. We give a Boolean algebra decomposition of the
related poset €1, ;. Since this poset is a distributive lattice, in the last section we extend these
ideas to poset decompositions of any distributive lattice and other analogues.

2 A poset interpretation

In this section we consider the poset structure on 0-1-words in (2, ;. For further poset terminology
and background, we refer the reader to [6].

We begin by making the set of elements €1, ;. into a graded poset by defining the cover relation
to be
uo0lov <uollow,

where o denotes concatenation of words. The word 0" %1¥ is the minimal element and the word
1¥0"~* is the maximal element in the poset Qn . Furthermore, this poset is graded by the i inversion
statistic. This poset is simply the interval [0 x] of Young’s lattice, where the minimal element 0 is
the empty Ferrers diagram and x is the Ferrers diagram consisting of n — k columns and k rows.

An alternative description of the poset (1, is that it is isomorphic to the Birkhoff transform
of the Cartesian product of two chains. Let C,, denote the m-element chain. The poset €, ) is
isomorphic to the distributive lattice of all lower order ideals of the product C,,_p x Cj, usually
denoted by J(Cjp—x X Ck).

Definition 2.1. Let Q’r’hk C Q1 consist of all 0,1-words v = vivy - v, in Q. such that
U1 S V2, U3 S V4, -ee, V2 n/2|-1 S V2n/2)-

Observe that when n is odd there is no condition on the last entry w,. Define two maps ¢
and v on (), ;, by sending the word w = wyws - - - w, to

¢(w) = min(wy, wy), max(wy, wy), min(ws,wy), max(ws,wy), ...,

Y(w) = max(wy, we), min(wy, we), max(ws,ws), min(ws,wy),



The map ¢ sorts the entries in positions 1 and 2, 3 and 4, and so on. If n is odd, the entry w,
remains in the same position. Similarly, the map ¢ sorts in reverse order in each pair of positions.
Note that the map ¢ maps €, surjectively onto the set Q.

We have the following Boolean algebra decomposition of the poset €2, ;.

Theorem 2.2. The distributive lattice Q1 has the Boolean algebra decomposition

1!
Uean

Proof. Observe that the maps ¢ and v satisfy the inequalities ¢(w) < w < t(w). Furthermore, the
fiber of the map ¢ : 2, , — Q/ , is isomorphic to a Boolean algebra, that is, ¢~ (v) = [v,9(v)]. O

For v € Q ; define the statistic
ascodd (v) = [{i @ vi < viy1,7 odd}|,
that is, ascogq(-) enumerates the number of ascents in odd positions.
Corollary 2.3. The g-binomial is given by

|:Z:| — Z qil'lv(’l)) . (1 + q)ascodd(’u)' (21)
q
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Proof. 1t is enough to observe that the sum of the inversion statistic over the elements in the fiber
¢~ (v) = [v,9(v)] for v € Q ;. is given by g™ @) - (1 4 g)25Ceda(v), O

A geometric way to understand this ¢-(1+ ¢)-interpretation is to consider lattice paths from the
origin (0,0) to (n — k, k) which only use east steps (1,0) and north steps (0,1). Color the squares
of this (n — k) x k board as a chessboard, where the square incident to the origin is colored white.
The map ¢ in the proof of Theorem 2.2 corresponds to taking a lattice path where every time there
is a north step followed by an east step that turns around a white square, we exchange these two
steps. The statistic ascoqq enumerates the number of times an east step is followed by a north step
when this pair of steps borders a white square.

Let er(n, k) denote the cardinality of the set Q2 . Then we have

Proposition 2.4. The cardinalities er(n, k) satisfy the recursion
er(n,k) =er(n —2,k—2)+er(n—2,k—1)+er(n—2,k) forn,k>2

with er(n,n) =1 and er(n, k) = 0 whenever k >n, k <0 orn < 0.

Proof. A word in ng begins with either 00, 01 or 11, yielding the three cases of the recursion. [



Directly we obtain the generating polynomial.

Theorem 2.5. The generating polynomial for er(n, k) is given by

Zer(n, k)-a* =1+ x4+ 2221 4 g)n2 2
k=0

We end with a statement concerning the symmetry of the ¢-(1 + ¢)-binomial.

Corollary 2.6. The set of defining elements for the q-(1 + q)-binomial satisfy the following sym-
metric relation:

[ | = 190 k-

Proof. This follows from the fact that the generating polynomial for er(n, k) is a product of palin-
dromic polynomials, and thus is itself is a palindromic polynomial. O

3 Analysis of the Fu—Reiner—Stanton—Thiem interpretation

A weak partition is a finite non-decreasing sequence of non-negative integers. A weak partition A =
(A, Adn—g) with n — k parts and each part at most k& where A\; < -+ < \,_j corresponds to a
Ferrers diagram lying inside an (n — k) x k rectangle with column 4 having height ;. These weak
partitions are in direct correspondence with the set €2, ;.

Fu, Reiner, Stanton and Thiem used a pairing algorithm to determine a subset Q! , C Q,, . of
0-1-sequences to define their ¢-(1 4 ¢g)-analogue of the g-binomial; see [2, Proposition 6.1]. This
translates into the following statement. The set €2/ , is in bijection with weak partitions into n — k
parts with each part at most £ such that

(a) if k is even, each odd part has even multiplicity,
(b) if k is odd, each even part (including 0) has even multiplicity.
Definition 3.1. Let frst(n, k) be the cardinality of the set ) .
Lemma 3.2. The quantity frst(n, k) counts the number of weak partitions into n — k parts where

each part is at most k and each odd part has even multiplicity.

Proof. When k is even there is nothing to prove. When £ is odd, by considering the complement
of weak partitions with respect to the rectangle of size (n — k) x k, we obtain a bijective proof. The
same complement proof also shows the case when k is even holds. O

Theorem 3.3. The frst-coefficients satisfy the recursion

frst(n, k) = frst(n — 1,k — 1) + frst(n — 1, k) for k even,
frst(n, k) = frst(n — 2,k — 2) + frst(n — 2,k — 1) + frst(n — 2, k) for k odd,

where 1 <k <n-—1.



Proof. We use the characterization in Lemma 3.2. When k is even there are two cases. If the last
part is k, remove it to obtain a weak partition counted by frst(n — 1,k). If the last part is less
than k, then the weak partition is counted by frst(n — 1,k — 1).

When £ is odd there are three cases. If the last two parts are equal to k, then removing these
two parts yields a weak partition counted by frst(n — 2, k). Note that we cannot have the last part
equal to k and the next to last part less than k since k is odd. If the last part is equal to k — 1, we
can remove it to obtain a weak partition counted by frst(n — 2,k — 1). Finally, if the last part is
less than or equal to k — 2, the weak partition is counted by frst(n — 2,k — 2). ]

Lemma 3.4. The inequality frst(n, k) < frst(n + 1,k + 1) holds.

Proof. The weak partitions which lie inside the rectangle (n — k) x k and satisfy the conditions of
Lemma 3.2 are included among the weak partitions which lie inside the larger rectangle (n — k) x
(k 4+ 1) and satisfy the same conditions. O

Theorem 3.5. For all 0 <k < n the inequality |0} ;| = er(n, k) < frst(n, k) = |, ;| holds.

Proof. We proceed by induction on n. The induction base is n < 3. Furthermore, the inequality
holds when k£ is 0, 1, n — 1 and n. When k is odd we have that

er(n,k) =er(n—2,k—2)+er(n—2,k—1)+er(n—2k)
< frst(n — 2,k — 2) + frst(n — 2,k — 1) + frst(n — 2, k)
= frst(n, k).

Similarly, when k is even we have

er(n, k) =er(n —2,k —2)+er(n — 2,k — 1) +er(n — 2,k)
<frst(n — 2,k —2) + frst(n — 2,k — 1) + frst(n — 2, k)
<frst(n — 1,k — 1) + frst(n — 2,k — 1) + frst(n — 2, k)
= frst(n — 1,k — 1) + frst(n — 1, k)
= frst(n, k),

where the second inequality follows from Lemma 3.4. These two cases complete the induction
hypothesis. O

See Table 1 to compare the values of frst(n, k) and er(n, k) for n < 10.

4 Concluding remarks

Is it possible to find a ¢-(1+ ¢)-analogue of the Gaussian coefficient which has the smallest possible
index set? We believe that our analogue is the smallest, but cannot offer a proof of a minimality.
Perhaps a more tractable question is to prove that the Boolean algebra decomposition of €, is
minimal.



16 20 30 19 13 4 1
20 30 50 39 32 14 5 1
25 40 80 69 71 36 19 5 1

10 16 19 16 10 4 1
14 26 35 35 26 14 5 1
15 30 45 51 45 30 15 5 1

1 1

11 11

11 1 11 1

1 2 2 1 12 2 1
12 4 2 1 12 3 2 1
13 6 5 3 1 13 5 5 3 1
13 9 8 8 3 1 13 6 7 6 3 1
1 4 12 14 16 9 4 1 14 9 13 13 9 4 1
1 4 1 4

15 1 5

15 1 5

Table 1: The frst- and er-triangles for n < 10.

We can extend these ideas involving of a Boolean algebra decomposition to any distributive
lattice. Let P be a finite poset and let A be an antichain of P such that there is no cover relation
in A, that is, there is no pair of elements u,v € A such that u < v. We obtain a Boolean algebra
decomposition of the Birkhoff transform J(P) by defining

J'(P)={I € J(P) : theideal I has no maximal elements in the antichain A}.
The two maps ¢ and v are now defined as
¢p(I)=1—{a e A : the element a is maximal in I},
Y(I)=IU{a€c A : ITU{a} € J(P)}.
Then we have the following decomposition theorem
Theorem 4.1. For P any finite poset the distributive lattice J(P) has the Boolean algebra decom-

position

IeJ"(P)
Yet again, how can we select the antichain A such that the above decomposition A has the
fewest possible terms? Furthermore, would this give the smallest Boolean algebra decomposition?

Another way to extend the ideas of Theorem 2.2 is as follows. Define €27 , to be the set of all
words v € €, ;, satisfying the inequalities

U1 SV < SV, Upd SU42 S S U2, oy U] et D S Upgnr) g2 S 000 S U]
For 1 <i < |r/2] define the statistics b;(v) for v € Q7 ; to be
bi(v) = {7 € [ln/r]] = vrjria + vrjry2 + -+ o € {i,r — i}
Theorem 4.2. The distributive lattice 2,1, has the decomposition

Qur= | O x @ xx .

veﬂfhk



Corollary 4.3. The g-binomial is given by

n] Z v |7 b1(v). r bz(v).“ r 10Lr/2@)
K, e 1 2 17/2] '

Ve | q q q

The least complicated case is when r = 3, where only one term appears in the above poset
product. This term is (23 1 which is the three element chain C'3. The associated Gaussian coefficient
is 1+ ¢ + ¢%. Thus Corollary 4.3 could be called a ¢-(1 4 ¢ + ¢%)-analogue. As an example we have

6
[3} =1+q-(I+q+)*+q"-(L+a+¢*)*+4"
q

On a poset level this a decomposition of J(C5 x C3) into two one-element posets of rank 0 and
rank 9, and two copies of C3 x C3, where one has its minimal element of rank 1 and the other of
rank 4.
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