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Abstract. We show how the flag -vector of a polytope changes when cutting off any
face, generalizing work of Lee for simple polytopes. The result is in terms of explicit
linear operators ond-polynomials. Also, we obtain the change in the fliagector when
contracting any face of the polytope.

1. Introduction

The flag f-vector records the face incidence information of a polytope. Fon-an
dimensional polytope there are linear dependencies amongd'tkatéles of the flag
f -vector. These dependencies are given by the generalized Dehn—-Sommerville relations
[2] which determine a subspace of dimension title Fibonacci number. Many bases
exist for this subspace, but the one given bydtténdex [4] has been particularly fruitful
for exploring and answering questions about flag vectors and revealing their underlying
algebraic structure.

For a general polytope determining ttaindex is as difficult as determining its flag
f-vector. The groundbreaking result which has enableddrhadex to be used as a tool
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to understand the combinatorics of polytopes was found by Ehrenborg and Readdy [10].
They showed thed-index is a coalgebra homomorphism and applied their coproduct
techniques to determine how tlee-index of a polytope, and, more generally, of an
Eulerian poset, changes under geometric operations, such as taking the pyramid or the
prism. Both these operations are expressed as derivatiort:-polynomials. Billera et

al. [8] used these coalgebra techniques to show thefflagctor of zonotopes satisfy
precisely the same linear relations as those of all polytopes. Additionally, the coproduct
formulations of the pyramid and prism operations enabled them to give a very compact
proof of Bayer and Billera’s result [2] that the flafyvectors of all polytopes span

the linear space determined by the generalized Dehn—Sommerville equations [8]. As a
consequence, they prove tbeéindex of zonotopes is coefficientwise minimized on the
cube of the same dimension [7]. Other work in this vein includes how to compute the
cd-index of products of polytopes, due to Ehrenborg and Fox [9], and how to compute
the torich-vector of posets, due to Bayer and Ehrenborg [3].

Recently Billera and Ehrenborg [6] succeeded in proving a long-outstanding conjec-
ture of Stanley, namely, that thel-index of polytopes is minimized on the simplex.
The proof of this result and that of the cubical analogue for zonotopes relied heavily on
the ability to computed-indices. In the first case, Billera et al. gave an explicit expres-
sion for thecd-index of a zonotope in terms of the corresponding intersection lattice
[7]. Such a correspondence was known to exist by Bayer and Sturmfels [5] but had not
before been made so concrete. For the second result, Billera and Ehrenborg determined
how thecd-index of a polytope changes under &ishelling. Both of these results point
to the future role thed-index will have in proving inequalities for flag vectors. Hence, it
is a fundamental question to understand how changes in a polytope affedtitiaex.

In his dissertation Lee studied how thevector changes under operations applied to
a simplicial complex. For example, one of his results (dualized) is that-freynomial
of a simplen-dimensional polytopé# with ak-dimensional facé cut off is given by

h(P — F) = h(P) + h(F) - (X +--- +x" 1),

See Proposition 2.10.1(iv) of [11]. For simple polytopesttheector determines the flag
f-vector and thed-index of the polytope [13, Theorem 3.1].

Generalizing Lee’s result, in this paper we consider the impact on the flaggtor
after cutting off any facd= from a polytope. The technique we use is to contract the
face F into a vertex and then cut off this vertex. Although the resulting object after
contracting the face may not be a polytope, it is a regular cell complex and results about
thecd-index extend to this case.

When contracting a fackE, the change in thed-index is a linear combination of the
cd-indices of the face figures of all the subfaces of the fac@he coefficients in this
linear combination ared-polynomials. The previously known result [10] for cutting off
a vertexv expresses the change in ttetindex in terms of a derivation of thed-index
of the vertex figure ob. In our generalization to cutting off any fade, the change
depends on a family of explicit linear operators applied to the same face figures as in the
contraction case.

The problem of determining all the linear inequalities for flagrectors of poly-
topes is settled in three dimensions [14] and is still open in higher dimensions. See
Bayer's paper [1] for the best-known results for 4-polytopes. One application of know-
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ing how flag f -vectors behave under the cutting and contraction operations would be
to construct sequences of polytopes whose flagectors approach the extreme rays
of the cone generated by all flagvectors of polytopes. This would give a method to
prove that a given linear inequality on fldgvectors is the best possible and cannot be
improved.

2. Definitions and Notation

We define the basic terminology used throughout this paper. The statements of the results
will be phrased in geometric language, while the proofs will be in terms of the partially
ordered sets (posets) corresponding to these geometric objects. For a standard reference
on polytopes, see [15].

Given a convex-dimensional polytopd® and 0< i < n — 1, let f; be the number
of i-dimensional faces of the polytofge. The vector(fy,..., f,_1) is called thef-
vectorof P. A classic result is that thé-vector satisfies the Euler—Poineatélation

i”:_ol(—l)i fi = 1— (—1)". The f-vector has a natural extension by counting chains of
faces in the polytope. For a subse {0, ..., n — 1}, we denote byfs the number of
chains of facesflagg in P, F; € --- € F¢, with S= {dimF; < --- < dimFy}. The
vector consisting of all the numbefs, S C {0, ...,n — 1}, is called thelag f-vector
of P. Observe thaffj; = f; and f; = 1. The linear span of the flag-vectors of all
polytopes, and more generally, of all Eulerian posets, is described by a system of linear
equations known as the generalized Dehn—-Sommerville equations [2].

ForanySc {0,...,n—1},weseths = > ;.s(—1)!S"TI. fr, and we call the vector
of all such numbers théag h-vectorof P. Define a polynomial in the noncommuting
variablesa andb, called theab-index by

w(P)=Y hs-us,
S

whereus = Ug---Un_1, Ui = bif i € Sandu; = aifi ¢ S. A result conjectured
by Fine and proved by Bayer and Klapper [4] is that &heindex of a polytope can be
written as a polynomial in the variables= a+ b andd = a-b+ b - a. This polynomial
in terms of the variables andd is called thecd-index It gives an implicit encoding of
the generalized Dehn—-Sommerville equations [2].

Let F be a nonempty face of the polytofe There exists a linear functionéaland
a real numbec such that for all pointx € P we have that(x) > ¢, butx € P and
£(x) = cimplies that the poink belongs to the facé. That is, the hyperplangx) = ¢
is asupporting hyperplanef the faceF. We define the polytop® — F, that is, the
polytope P with the face F cut oty

P—F={xeP:¢X) >c+6},

wheresd is an arbitrary small positive real number. Observe that the polyBbpe F
depends on the choice 6fc, ands, but the combinatorial type & — F is independent
of these variables.

Let v be a vertex of the-dimensional polytopd> and let/(x) = ¢ be a supporting
hyperplane of the vertex Thevertex figureof v is the(n — 1)-dimensional polytop&
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defined by
P/v={xe P: £(X) =c+ 6},

wheres is an arbitrary small positive real number. As before, the combinatorial type
of P/v is well-defined. Observe that every face of the polytéjye corresponds to a
face of P that containg. For ak-dimensional facé- of the polytopeP theface figure
P/F is an(n — k — 1)-dimensional polytope with the property that every facégf
corresponds to a face &f that containd=. More formally, choose a maximal chain of
facesFo C F; C --- € Fx = F such that dindF) = i. Then the face figur®/F is the
iterated quotient

P/F=(--(P/Fo)/F1)--)/F«k.

Observe that the fack corresponds to a vertex in the quotiént- (P/Fg) ---)/Fi_1
and hence the iterated expression is well-defined.

Let Z(a, b) be the polynomial ring in the noncommutative variabdeandb. Let
Z(c, d) be the subring generated by= a+ b andd = ab+ ba. The ringZ(a, b) has a
grading by letting the degree afandb be 1. The rindZ{c, d) inherits this grading; thus
c has degree 1 ardihas degree 2.

Recall that alerivation fon aringRis a linear map which satisfies the Leibniz rule
(or product rule)f (x-y) = f(x)-y+x- f(y). To determine a derivation, it is enough to
specify it on the generators. LEtbe a derivation ofZ.(a, b) by letting E(a) = ab and
E(b) = ba. This derivation restricts to a derivation éric, d). To see this, it is enough
to verify E(c) = d andE(d) = dc. Observe that this derivation increases the degree by
one.

In [10] the authors gave a formula for thd-index of a polytope with a vertex cut off
in terms of the derivatioft.

Proposition 2.1[10]. Let P be a convex polytope and iebe a vertex of PThen the
cd-index of the polytope P- v, that is the polytope P with the vertaxcut off is given

by
Y(P —v)=V¥(P)+ EMW(P/v)).

We now introduce some poset terminology. A standard reference for basic concepts is
Chapter 3 of [12]. A graded pos€tis a poset with minimal elemeft maximal element
1, and a rank functiop such thato(0) = 0 andp(x) = p(y) —1 for y coveringx.

The rank ofQ is defined to be the rank of the maximal elemi&ndenoted by (Q). For
X,y € Q andx <y, theinterval [x, y] is the set{z. x < z < y}. Observe the interval
[X, y] is also a graded poset of rapkX, y) = p(y) — p(X).

The notion of the flagf-vector can be extended to graded posets. We present a
different approach to define theb-index by counting chains in a poset. For a chain
c={0=x<x1 << Xkr1 = 1}ina graded pose® of rankn + 1, define the
weightof the chainc to be the product wt) = w; - - - w,, where

W — b if ief{o(X),....00%)}
"“la-—"b otherwise.
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Theab-index is then given by

U(Q) =) wi(), (2.1)

where the sum is over all chairgsn the poseQ.

For a polytopeP, let L (P) denote the set of all faces &f, including the polytope
itself and the empty fac@, where the elements df (P) are ordered by inclusion.
Observel (P) is a graded poset, and, in fact, is a lattice. The rank function is given by
p(X) = dim(x) + 1, the minimal element is the empty face and the maximal element
is the polytopeP. The intervals of the face lattice also have a geometric interpretation.
For F andG two faces ofP such that- C G, the face lattice of the face figufe/F is
the interval F, G]. Notice that theab-index of a polytope and thab-index of its face
lattice are the same.

The Mobius functionon a posetQ is defined asu(x,x) = 1 and u(X,y) =
— D x<zey M(X,2) for X < y. A posetQ is calledEulerian if its Mobius function
on any interval X, y] in Q is given byu(x, y) = (—=1)**¥, An important fact which
follows from the Euler—Poincarformula is that face lattices of convex polytopes are
Eulerian. The result by Bayer and Klapper of the existence otthimdex extends to
Eulerian posets, that is, every Eulerian poset hed-imdex.

Let B¥ denote theék-dimensional open unit bajk € R¥: ||x|| < 1} and similarly let
Sk-1 denote thek — 1)-dimensional sphergx € RK: ||x|| = 1}. A finite regular cell
complex is a finite collection of nonempty pairwise disjoint open cellsC R" so that
(07, d07) is homeomorphic t@BX, S¥-1), wherek = dimo; anddo; can be expressed
as a union obj's. Again, we refer to Chapter 3 of [12] as a reference on regular cell
complexes. The geometric realizatiorgfdenotedrl"|, is|T"| = [ o;. We only consider
cell complexes where the geometric realization igran 1)-dimensional sphere. Form
theface poset IT") from I" by defining a partial order on the cells by < o; if o7 C o}
and adjoining a minimal elemeftand a maximal elemeit

The essential property we will need is that the face poset of a finite regular cell complex
is Eulerian; see Proposition 3.8.9 of [12]. Observe that every polytope is a regular cell
complex and that the notion of a face figure extends to regular cell complexes. Thus,
Proposition 2.1 generalizes to regular cell complexes as follows.

Proposition 2.2. LetI be a finite regular cell complex and lebe a vertex of*. Then
thecd-index of the regular cell compldx — v, that is the compleX” with the vertex
cut off is given by

U —v) = W) + EW (/).

The motivation for needing the generality of regular cell complexes is that when we
contract a face of a polytope the result may not be a polytope. For example, contracting
an edge of a triangle gives a 2-gon. However, after contracting a face of a polytope, the
result is a regular cell compldxwhose face poset is Eulerian and hence hasiadex.
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3. The Facet Obtained by Cutting a Face

Let P be a polytope and €t be a face of the polytopE. When cutting the fac€& off
P we create a new fac@t of the polytope. This facet is described by

T ={xe P: £(xX) =c+4d}.

When the facd- is a vertexv, T is the vertex figure of. Observe that every nonempty
face of T corresponds to a face of one dimension higher from the poly®opédoreover,
these faces oP are not faces of-, but instead they strictly contain a subfaceFof
Hence letk denote the subposet of the face lattice of the polytepe

K = {x € L(P): there existy € (0, F] such thaty < x}.
Thus we have that the face lattice of the fatds isomorphic to
L(T) = (K — (0, F]) U {0}.
Fork > 0 define thecd-polynomials
= (2 —2d)¢ and tuu1=—(c2 —2d)* - c.
As ab-polynomials ther, satisfy the identity
@-b-mn=@-b" (-1H"-a-b).

Theorem 3.1. Let P be a polytope with nonempty faceltet T be the facet created
by cutting off the face F from the polytope Fhen thecd-index of the facet T is given

by
W(T) = i) - W(P/X),
X

where X ranges over all nonempty subfaces of the face F

Proof. Let K be the subposet defined in the previous discussion. Congiler
(0, F]) U {0} as a subposet of the face lattice of the polytéheThat is, the rank of
an elemenk in K is the rank ofx in the original face latticé (P). Since the subposet
(K —(0, F])u{0} does not have any elements of rank 1, we havedtiak — (0, F])U{0})
is equal to(a — b) - W(T) by the chain definition (2.1) of thab-index.

Forachainc = {x; < X < -+ < Xg41 = i} in K, let m(c) denote the smallest
element of the chain, that is,m(c) = x;. Moreover, define

rc) = maxy: 0 <y < F andy < m(c)}.

Noter (¢) = F A m(c), whereA denotes the meet operation of the face latti¢®).
Forx € (O, F] define

Cx =) W),
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where the sum is over all chaiedn K satisfyingr (c) = x andm(c) > Xx. Hence we
have

Z Cx =¥ ((K— (@O, F)U{0}) = (@—b)-w(T). (3.1)
6<X§F
We claim the following identity holds:
(@bt ((a-b)+b) - w(x. Ih)= > (Cy+@-b"Y*-b-w(y.1]). (32)

x<y<F

where0 < x < F. To see this, consider all the chaini K such tham(c) > x. The
weight of these chains is counted by the left-hand side of (3.2). To count the right-hand
side of (3.2), lety = r(c) so thatx < y < F. Two cases occur. First, f < m(c),
then all such chains are counted ®y. If y = m(c), then these chains are counted by
(a—b)?®-1.p. W¥([y, 1]). Thus the identity in (3.2) holds.

By applying the Mbbius inversion theorem to (3.2), we have

Ca+@-b® b w(x. 1) = Y 1™V @-by¥ " a w(y. 1.

x<y<F
Summing over alk satisfyingd < x < F gives

Y. Ci=— ) (@a-b™ b w(x1)
O<x<F O<x<F

+ Z Z (=1)P*Y . (a—by*P 1. a. u(y, i]).

O<x<F X<y=F

Change the order of summation in the second term of the left-hand side of this equation
and use that the intervad]y] is Eulerian. After combining the two terms into one sum,
we have

Y Cx= ) @b (=)™ a—b) - w(x, 1].

O<x<F O<x<F

Factoring out ata— b) and rewriting using the definition of tluel-polynomialsz; gives

Y Ci=(@-b)- Y gp0-1- W(x 1]

O0<x<F O0<x<F

This and (3.1), after dividing bya — b), yield the desired result. O

As an example, leP be the polytope obtained from the four-dimensional cross-
polytope by cutting off a vertex. Theg-index of P is W(P) = ¢*+ 11-dc? 4+ 23- cdc+
15. cd 4 30- d?. (This can be computed from Proposition 2.1 and the expression for
the bipyramid operation appearing in Corollary 4.7 of [10].) €et uv be an edge i®
such that is a vertex from the four-dimensional cross-polytope aigla vertex created
in the cut. The face figure @ is a square, the vertex figure ofis an octahedron, and
the vertex figure ob is a pyramid with square base. We have the follonédgndices:
V(P/e) =c®+2-d, ¥(P/u) =c®+4-dc+6-cd, and¥(P/v) = ¢+ 3-dc+3-cd.
Thecd-index of the faceT created when cutting off the edgdrom the polytopeP is
given byw(T) = —c- W(P/e) + W(P/u) + W (P/v) =c3+7-dc+ 7 - cd.
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4. Contracting a Face

Lemma4.1. The polynomials
m=a-@-b"t.b+ 1" 1. b-@a-b)"* a
for n > 1 with yy = 0 are cd-polynomials Furthermore for n > 0,

)/n=(a—b)n-b—b-'lfn.

Proof. Define a linear map.: Z(a,b) — Z{a,b) by A(a-w) = a-(a—b) - w,
Ab-w)=—=b-(@a—b)-w, andr(l) = 0. Observe that(c- w) = (¢ — 2d) - w and
A(d - w) = (cd — dc) - w. Hencea restricts to a linear map di(c, d). Finally observe
thati(yn) = ynt1 forn > 1 andy;, = d. To obtain the second identity, note that it holds
forn = 0. Forn > 1, itis straightforward to check. O

Theorem 4.2. Let P be aconvex polytope and let F be a nonempty face of that polytope
Let P, be the regular cell complex created by contracting F inTRen

W(P,) =W(P) = > yaimx - W(P/X),
X
where X ranges over all nonempty subfaces of the face F

Proof. LetT be the facet created by cutting off the faggrom the polytopeP. We
first give a chain argument to show

UP)+ Y @=b)™ b w(x, 1) = W(P) +b- ¥(T).

6<X§F

To do this, observe first that there are two types of chains in the contracted cell complex
P,: those which use the new vertexcreated from contracting the fad¢e and those
which do not use the new vertexThe weight of those chains B, which use the vertex
v is given by the ternb - W (T) and those which do not use the vertegontribute to the
weightW (P). The weight of the remaining chainsin(P) corresponds to the weight of
those chains ifP which include at least one nonempty subface of the fadeor such a
chainc if we let x denote the first nonempty subfacefoippearing irc, then the weight
of all such chainsi$~;_,_r(@a—b)?®~1.b. w([x, 1]). Hence the identity holds.

We thus have

W(P) = W(P)+b-w(T)— Y (@a-b) . b-w(x 1)
O<x<F
= WP - Y (@=0b)P T b—b-1yp0-1) W(x. 1]
O<x<F
= WPP)— > yy-1- ¥(x 1D. O

O<x<F
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Recall the four-dimensional polytog® given as an example in the previous section.
Thecd-index of the polytopd®, obtained by contracting the edgés given by¥ (P,) =
W(P)—d-W¥(P/e) =c*+10- dc? + 23- cdc+ 15- ¢2d + 28- d2.

5. Cutting Off a Face

In this section we obtain an expression for cutting off any dimensional Fafrem a
polytopeP. Geometrically this follows from realizing this operation is equivalent to first
contracting the fac& into a pointv and then cutting off the point.

Define the family of linear operatois, onZ(c, d) for n > 0 by

E _f?—=2d)y" V2. [-2d-w —c- E(w)]  for nodd,
n(w) = (® —2d)"?. E(w) for n even.

Note thatEg = E is a derivation defined o#(c, d) by E(c) = d andE(d) =d - c.
Theorem 5.1. Let P be a polytope and let F be a nonempty face ofiren

W(P —F)=W(P)+ Y Edimx) (¥(P/X)),
X

where X ranges over all nonempty subfaces of the face F
In order to prove this theorem, we need the following lemma.

Lemma5.2. For all nonnegative integers n we have

(e — 2d)("-D/2 . og if n od
E(th) =y + {0( ) if n ev(ein

Proof. Lete, denote the expression given in the bracelet. We prove the statement by
induction onn. The base cases= 0 andn = 1 are straightforward to check. Assume
now that the identity holds fan and we prove it fon + 2. We have

E(tni2) = E(2 — 2d) - 71 + (¢ — 2d) - E(1n).
Applying the induction hypothesis gives
E(ths2) = (cd —do) - 1, + (2 — 2d) - yn + (2 — 2d) - &p.
Expandingy, with Lemma 4.1 and observing,» = (¢ — 2d) - ¢, gives
E(thy2) = (cd—dc)-tn+(@—b)2- (@=b)"-b—b- 1) + enya.
After simplifying and using Lemma 4.1 again, we have

E(tni2) = @— D)2 b =D iz + ens2 = Ynr2 + ensa- O
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Observe that Lemma 5.2 gives a different proof that the polynonpjalare cd-
polynomials.

Proof of Theorend.1. We first contract the fadeto a pointv to form the cell complex
P, and then cub from P, to form the polytopeP® — F. Observe thaE,(w) = &, - w +
7, - E(w). Now by Theorems 3.1 and 4.2 we have

V(P —F) = W(P)+ EM(T)

W(P) =Y vimx) - W(P/X) +E (Z Thim(x) W(P/X>)
X X

W(P)+ > (E(timx) —vaimex) - W(P/X)+ Y Taimx) - E(W(P/X))
X X

W(P) + > edmex - WP/ X) + Y Taimx) - E(W(P/X))
X X

W(P) + > Edimox) (¥ (P/ X)),
X

whereX ranges over all nonempty subfaces of the face O

Finally in our example, cutting off the edgérom the polytopeP we havel'(P—e) =
W (P) + E1(¥(P/€)) + Eo(¥ (P/u)) + Eo(W¥(P/v)) = ¢* +18-dc? 4+ 31- cdc+ 16-
c’d 4 42 d2.
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