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We present a probabilistic approach to studying the descent statistic based upon
a two-variable probability density. This density is log concave and, in fact, satisfies
a higher order concavity condition. From these properties we derive quadratic
inequalities for the descent statistic. Using Fourier series, we give exact expressions
for the Euler numbers and the alternating r-signed permutations. We also obtain a
probabilistic interpretation of the sin function. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Given a permutation s=s1 · · ·sn+1 in the symmetric group Sn+1, the
descent word u=u1 · · · un is the word in the variables a and b with ui=a if
si > si+1 and b otherwise. This encodes the classical notion of the descent
set [14]. For u an ab-word of length n, the descent statistic of u, denoted
[u], is the number of permutations in the symmetric group Sn+1 having
ab-word u.

A natural question to ask is for which ab-word u of length n is [u]
maximal. Historically this statistic has been studied in the language of the



descent set. However, we will find it more convenient to use the descent
word for stating and proving our results. Niven and de Bruijn [3, 11]
independently showed that the descent statistic is maximized for alternating
ab-words. Sagan, Yeh and Ziegler [13] showed [uaav] [ [uabv̄], where v̄
denotes the ab-word v with the a’s and b’s uniformly exchanged. This result
also appears in the work of Viennot [17, 18]. Both of these inequalities
follow from the non-negativity of the cd-index; see [12; 15, Corollary 2.9].
Gessel conjectured that among permutations with r runs, the descent
statistic is maximized when the runs have roughly equal length. This was
proven by Ehrenborg and Mahajan [5] by developing a large class of
inequalities. Among them is the fact that the sequence in Corollary 3.6 is
unimodal.

In this paper we derive quadratic inequalities for the descent statistic
which can be thought of as a generalization of log concavity. The key to
developing these inequalities is to recast the problem in terms of prob-
abilities. Not only then does one have the power of probability theory at
one’s disposal, but also the great machinery of mathematical analysis.

For example, one efficient way to compute and study the descent statistic
[u] is by the Viennot triangle; see [4, 5, 10, 17, 18]. Using our probabilistic
viewpoint, we develop a continuous analogue of the Viennot triangle. See
identities (2.1) and (2.2).

The question of determining inequalities for the descent statistic is in
part motivated by the study of flag vectors of polytopes. In fact, the
descent set statistic is equivalent to the flag h-vector of the simplex. The
classification of linear equalities among the flag vectors of polytopes is
complete [2]. However, the question of determining inequalities is com-
pletely open for polytopes of dimension greater than three [1].

This paper is organized as follows. In Section 2 we introduce a two-
variable probability density and state some of its properties related to the
probabilistic interpretation of the descent statistic. In Section 3 we show
concavity results of this density imply probabilistic quadratic inequalities.
Using the theory of Fourier series, we then study the behavior of alternat-
ing permutations. One interesting result is a probabilistic interpretation of
the sin function. In Section 5 we show these techniques also apply to the
theory of r-signed permutations. Finally, in the last section, we translate
our probabilistic results back to the descent statistic and conjecture a
sharpening of one of the inequalities.

2. PRELIMINARIES ON DENSITY FUNCTIONS

Let a and b be noncommutative variables. For u=u1 · · · un an ab-word of
length n, we say a sequence of n+1 real numbers x1, ..., xn+1 has descent word
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u if xi < xi+1 whenever ui=a and xi > xi+1 whenever ui=b. Let Sn denote
the symmetric group on n elements, that is, Sn consists of all n! permuta-
tions. Since one can view a permutation as a sequence of numbers, one can
associate to a given permutation a descent word in the obvious way. Thus
for an ab-word u of length n, define the probability

{u}=P{a random permutation s ¥ Sn+1 has ab-word u}.

Here random means that we pick a permutation with uniform distribution,
that is, each permutation is equally likely to be chosen.

There are two natural involutions on ab-words. For u=u1 · · · un an
ab-word, let ug=un · · · u1 denote the ab-word u read backwards and let ū
denote the operation of uniformly changing the a’s in u to b’s and the b’s in
u to a’s. By symmetry of permutations we have that

{u}={ug}={ū}.

Consider a continuous random variable with density function f(x). Let
X1, ..., Xn+1 be a sequence of n+1 independent identically distributed
random variables with density function f(x). The probability that the
sequence X1, ..., Xn+1 has ab-word u is given by {u}. This follows from the
fact that if we consider the relative order of the sequence, we obtain a
random permutation.

In order to study the discrete statistic {u}, we can use continuous
random variables. Define f(u, x) to be the probability that the random
sequence X1, ..., Xn+1 has descent word u and the last entry Xn+1 is equal
to x. In other words, f(u, x) is a two-variable density function where the
first variable is discrete and the second is continuous.

We now state a number of identities concerning this two-variable
probability density.

Proposition 2.1. Let u and v be two ab-words. Then

f(1, x)=f(x),

f(ua, x)=F
x

−.
f(u, t) ·f(t) dt, (2.1)

f(ub, x)=F
.

x
f(u, t) ·f(t) dt, (2.2)

{uv}=F
S

f(u, t) ·f(v̄ g, t)
f(t)

dt, (2.3)

where S is the support of the density function f(x).
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Proof. The first identity is direct. The second and third identities follow
by conditioning on the last entry in the random sequence. The fourth iden-
tity follows from two facts. First, observe the two-variable density that
Xn+1, ..., Xn+m+1 has ab-word v and the first entry is x=Xn+1 is f(v̄ g, x).
Secondly, the conditional probability that X1, ..., Xn+1 has ab-word u given
the last entry Xn+1 is x equals the expression f(u, x)/f(x). L

The most natural probability distribution to work with is the uniform
distribution. In Section 3 we use the uniform distribution on the unit
interval [0, 1]. However, in Sections 4 and 5 it will be more convenient to
work with the uniform distribution on the interval [0, p/2].

Corollary 2.2. Assume that the density f(x) is uniform. If u is an
ab-word of length n then f(u, x) is a polynomial of degree n in the variable x.

We end this section with an observation about symmetric density
functions.

Lemma 2.3. If the density f(x) is symmetric around c, that is, f(x)=
f(2 · c−x) then

f(ū, x)=f(u, 2 · c−x).

3. QUADRATIC INEQUALITIES

In this section we restrict our attention to the uniform distribution on the
interval [0, 1], that is, f(x)=1 for x ¥ [0, 1] and f(x)=0 otherwise.
Hence we will only consider functions on the interval [0, 1].

Lemma 3.1. Let g be an arbitrary non-negative C2 function. Then g1/n is
concave if and only if g(x) · gœ(x) [ n−1

n gŒ(x)
2 for all x.

Proof. This follows from noting that g1/n is concave if and only if
(g(x)1/n)œ [ 0 and from the fact

(g(x))1/n)œ=
1
n
g(x)

1
n−1 ·1g(x) · gœ(x)−n−1

n
gŒ(x)22 . L

Theorem 3.2. Let u be an ab-word of length n. Then f(u, x)1/n is a
concave function of x.
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Proof. We proceed by induction on n. Without loss of generality, we
may assume w=ua with u an ab-word of length n. By equation (2.1) and
the fact that f(u, x)=g(x)n for some concave function g, we have

f(w, x)=F
x

0
g(t)n dt.

Thus

n
n+1

fŒ(w, x)2−fœ(w, x) f(w, x)

=
n
n+1

g(x)2n−ng(x)n−1 gŒ(x) ·F
x

0
g(t)n dt

=ng(x)n−1 ·1 1
n+1

g(x)n+1−gŒ(x) ·F
x

0
g(t)n dt2

=ng(x)n−1 ·F
x

0

1 −gœ(s) ·F s
0
g(t)n dt2 ds,

where the last equality follows from integration by parts. Since g is
concave, we know −gœ is non-negative, implying by Lemma 3.1 that
f(w, x)1/(n+1) is a concave function in the variable x. L

Recall a positive function f is said to be log-concave if log f is concave.

Proposition 3.3. Let g be a positive C2 function such that g1/n is
concave. Then g is log-concave.

Proof. We have

(log g)œ=
g·gœ−gŒ2

g2
[

n−1
n
gŒ2−gŒ2

g2
[ 0,

where the first inequality follows from Lemma 3.1. L

Corollary 3.4. Let u be an ab-word. Then the probability density
f(u, x) as a function of x is log-concave.

We are now ready to prove our main result.
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Theorem 3.5. Let u and v be ab-words. Then the following probabilistic
inequalities hold:

{uv}{uaav} [ {uav}2, (3.1)

{uav}{ubv} [ {uv}{uabv}, (3.2)

{uaav}{ubbv} [ {uabv}2. (3.3)

Proof. Let g(x)=f(ua, x) and h(x)=f(v̄ gb, x). By the Fundamental
Theorem of Calculus, f(u, x)=gŒ(x) and f(v̄ g, x)=−hŒ(x). By
Corollary 3.4 the function g(x) is log-concave. Thus the derivative of log g
is a decreasing function, so we have

0 [ g(x) · gŒ(y)−gŒ(x) · g(y) for x \ y.

The same inequality holds for the function h. Observe the product of these
two inequalities is always non-negative regardless of whether x \ y or
x [ y. Integrating this product over the unit square [0, 1]2, we obtain

0 [ F
1

0
F
1

0
(g(x) · gŒ(y)−gŒ(x) · g(y)) · (h(x) · hŒ(y)−hŒ(x) · h(y)) dx dy

=2 F
1

0
g(x) · h(x) dx ·F

1

0
gŒ(x) · hŒ(x) dx

−2 F
1

0
g(x) hŒ(x) dx ·F

1

0
gŒ(x) h(x) dx.

Dividing out the factors of 2 and using equation (2.3) to recast this expres-
sion in terms of probabilities, we see this is precisely the statement of
inequality (3.1).

Letting k(x)=f(v̄ ga, x) and using a similar argument with the functions
g and k, it is straightforward to see inequality (3.2) follows. Finally, to
show inequality (3.3), square each side of (3.2). Multiply this resulting
inequality with (3.1) and the dual version of (3.1), that is, {uv}{ubbv} [
{ubv}2. This gives

{uv}2 {uav}2 {ubv}2 {uaav}{ubbv} [ {uv}2 {uav}2 {ubv}2 {uabv}2.

Canceling out the non-negative term {uv}2 {uav}2 {ubv}2 from both sides of
this inequality yields inequality (3.3). L

Recall that a sequence of positive real numbers x0, x1, ... is said to be log-
concave if xi−1 · xi+1 [ x

2
i for i \ 1. By inequality (3.3) we immediately have

the following result.
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Corollary 3.6. For k=0, ..., n the sequence {uakbn−kv} is log-concave.

We now state a sharper version of (3.1) in Theorem 3.5 in the case v=1.
Notice this is a special case of Conjecture 6.2.

Theorem 3.7. Let u be an ab-word of length n. Then

{u}{uaa} [
n+2
n+3

·{ua}2.

Proof. Define the function g(x)=f(uaaa, x). Note that g(1)={uaa}.
By repeated use of the Fundamental Theorem of Calculus, we have gŒ(x)=
f(uaa, x) and gœ(x)=f(ua, x), implying gŒ(1)={ua} and gœ(1)={u}. By
Theorem 3.2 the function g(x)1/(n+3) is a concave function of x. Hence by
Lemma 3.1 the inequality

g(x) · gœ(x) [
n+2
n+3

·gŒ(x)2

holds for any x in the interval [0, 1], in particular, when x=1. L

4. DENSITY FOR ALTERNATING PERMUTATIONS

In this section we study the asymptotic behavior of alternating permuta-
tions. To do so, we will work with the uniform distribution on the interval
[0, p/2], that is, f(x)=2/p for 0 [ x [ p/2 and f(x)=0 otherwise. Let
an be the alternating word

an=·· · babaz
n

of length n ending in the letter a.

Theorem 4.1. The function f(an, x) has the following Fourier series
expansion:

f(an, x)=2·1
2
p
2n+2 · C

k \ 1
k odd

(−1)n · (k−1)/2

kn+1
· sin(k ·x). (4.1)

Moreover, for n \ 1 the sum converges uniformly.

Proof. The cases n=0 and n=1 can be found in any standard text on
Fourier series. Observe that the series ; k 1/k2 converges. By the Weierstrass
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M-test we obtain that for n=1 the series in Eq. (4.1) converges
uniformly.

We prove the remaining cases by induction, where we have just
completed the induction basis n=1. Substituting p/2−t for x in Eq. (4.1),
we obtain

f(an, t)=2·1
2
p
2n+2 · C

k \ 1
k odd

(−1) (n+1) · (k−1)/2

kn+1
· cos(k · t). (4.2)

Integrating this uniformly convergent series from 0 to x, we obtain the
desired result for n+1. L

The Euler number En is the number of permutations in the symmetric
group Sn having ab-word an−1. As a corollary we obtain the following
asymptotic expansion of the Euler numbers.

Corollary 4.2. For n \ 0, we have

En=n! ·2 ·1
2
p
2n+1 · C

k \ 1
k odd

(−1) (n+1) · (k−1)/2

kn+1
.

Proof. The cases n=0 and n=1 have to be considered separately and
are straightforward to check. Recall that En=n! ·{an−1}. Hence for n \ 2
we have En=n! · >p/20 f(an−1, x) dx and by Theorem 4.1 the result
follows. L

This corollary is well known; see for instance [9, Eqs. (5) and (6) in
Sect. 0.233, p. 9, and Eqs. (5) and (9) in Sect. 1.411, p. 42].

Theorem 4.3. For n \ 2, we have the following estimate:

: n!
En
f(an−1, x)− sin(x): < 1

3n−1
.

In other words, choose an n-tuple x1, ..., xn uniformly from the cube
[0, p/2]n. Given the condition that this n-tuple is alternating, that is, it
satisfies · · · < xn−2 > xn−1 < xn, the last entry xn has density approximated
by sin(x) for 0 [ x [ p/2.

Proof of Theorem 4.3. We first consider the case n is odd as then all the
summands are positive. By Theorem 4.1 and its corollary, we have
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: n!
En
f(an−1, x)− sin(x):= : Ck \ 1k odd

sin(k ·x)
kn

C
k \ 1
k odd

1
kn+1

− sin(x) :

=

: C
k \ 3
k odd

sin(k ·x)
kn

− C
k \ 3
k odd

1
kn+1
· sin(x):

C
k \ 1
k odd

1
kn+1

[ C
k \ 3
k odd

1
kn
+ C
k \ 3
k odd

1
kn+1
.

By the integral test, we have

C
k \ 5
k odd

1
kn

[ F
.

2

1
(2x−1)n

dx=
1

2(n−1)
·
1
3n−1
.

Hence, using the fact n \ 3, our estimate becomes

: n!
En
f(an−1, x)− sin(x): [ 1

3n
+

1
2(n−1)

·
1
3n−1
+
1
3n+1
+
1
2n
·
1
3n

[
3+9/4+1+1/2

3n+1

=
27/4
3n+1

.

By a similar argument, where we are now instead working with alternating
sums, the estimate in the case n is even becomes

: n!
En
f(an−1, x)− sin(x): [

1
3n
+

1
2(n−1)

·
1
3n−1
+
1
3n+1

1−
1
3n+1

[
17/2
3n+1−1

<
9
3n+1
. L
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5. ALTERNATING r-SIGNED PERMUTATIONS

Let r be a positive integer. An r-signed permutation is a list (i1, s1), ...,
(in, sn), where s1 · · ·sn is a permutation and the signs ij belong to the set
{1, ..., r}; see [16]. Hence there are rn · n! r-signed permutations.

Now let p be an integer such that 0 [ p [ r. The descent word
u=u1 · · · un is defined by two cases. First, for 1 [ j [ n−1 we say uj=a if
(ij, sj) precedes (ij+1, sj+1) in the lexicographic order and uj=b otherwise.
Finally, un=a if in [ p and un=b otherwise. This last comparison is called
the augmentation. Since we are comparing the last sign with the integer p,
the r-signed permutation is called p-augmented. The case p=n−1 corre-
sponds to augmented r-signed permutations. See [6, 7] for a poset expla-
nation for the augmentation. Note these references consider the augmenta-
tion at the beginning of the permutation, whereas we will find it more
convenient to have the augmentation at the end.

Let E r, pn denote the number of p-augmented r-signed permutations with
the alternating descent word an. As a special case observe that E1, 1n is En. It
was proven in [7] that the exponential generating function for E r, pn is given
by

C
n \ 0
E r, pn ·

xn

n!
=

sin(p ·x)+cos((r−p) ·x)
cos(r · x)

.

Let {u} r, p be the probability that a uniformly random chosen p-aug-
mented r-signed permutation has descent word u. We will now use the
results in the previous section to establish an expression for E r, pn .

Let f(x) be the density function for the uniform distribution on the
interval [0, c], that is, f(x)=1/c for 0 [ x [ c. From the sequence of
random variables X1, ..., Xn we can obtain a random r-signed permutation
by the following method. Let the sign ij be given by Nr/c ·XjM+1. Let Yj be
the remainder in this division with c/r, that is, Yj=Xj−c/r · Nr/c ·XjM.
Observe that Yj is uniformly distributed on the interval [0, c/r]. Now
determine the permutation s1, ..., sn by the relative order of Y1, ..., Yn.
Observe that each r-signed permutation (i1, s1), ..., (in, sn) occurs equally
likely. Moreover, if u=u1 · · · un is the descent word of this r-signed permu-
tation, then u1 · · · un−1 is the descent word of the sequence X1, ..., Xn. From
this argument the r-signed analogue of identities (2.1) and (2.2) follow.

Lemma 5.1. Let f(x) be the density function of the uniform distribution
on the interval [0, c]. The following probabilistic identities hold for p-aug-
mented r-signed permutations:
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{ua} r, p=F
p/r · c

0
f(u, x) dx,

{ub} r, p=F
c

p/r · c
f(u, x) dx.

Theorem 5.2. For n \ 2, the number of alternating p-augmented r-signed
permutations is given by the following expression:

E r, pn =r
n · n! · 2 ·12

p
2n+1 · C

k \ 1
k odd

(−1)n · (k−1)/2

kn+1
· sin 1k ·p ·p

2 · r
2 .

Proof. We have that E r, pn =r
n · n! · {an} r, p=rn · n! · >p/r ·p/20 f(an−1, x) dx.

The result follows by integrating equation (4.2). L

From this theorem we obtain the asymptotic expression for E r, pn which
was derived in [7].

Corollary 5.3. The asymptotic behavior of the number of alternating
p-augmented r-signed permutations is given by the following expression:

E r, pn ’
4
p
· sin 1p ·p

2 · r
2 ·12 · r

p
2n · n!.

6. CONCLUDING REMARKS

Let u be an ab-word of length n. Recall the descent statistic of u, denoted
[u], is the number of permutations in the symmetric group on n+1
elements, Sn+1, having ab-word u. Thus [u]=(n+1)! · {u}.

We now translate the results on probability inequalities to inequalities on
the descent statistic. Theorems 3.4 and 3.7 imply the following descent
statistic inequalities.

Theorem 6.1. Let u and v be ab-words with the sum of their lengths
equal to n. Then the following inequalities hold for the descent statistic:

[uv][uaav] [
n+3
n+2

·[uav]2, (6.1)

[uav][ubv] [
n+2
n+3

·[uv][uabv], (6.2)

[uaav][ubbv] [ [uabv]2, (6.3)

[u][uaa] [ [ua]2. (6.4)
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Ehrenborg and Steingrı́msson have conjectured similar inequalities for
the excedance set statistic [8].

Inequality (6.4) can also be proven directly using the Viennot triangle.
Notice that this inequality is a special case of a stronger version of
inequality (6.1). We conjecture that the stronger version is true.

Conjecture 6.2. For ab-words u and v having the sum of their lengths
equal to n, the inequality

[uv][uaav] [ [uav]2

holds. Equivalently,

{uv}{uaav} [
n+2
n+3

·{uav}2.

Conjecture 6.2 is implied from the following conjectured result.

Conjecture 6.3. Assume g and h are non-negative functions with
g1/(k+1) and h1/(m+1) both concave and k+m=n. Then

F
1

0
gŒ(x) h(x) dx ·F

1

0
g(x) hŒ(x) dx

[
n+3
n+2

·F
1

0
gŒ(x) hŒ(x) dx ·F

1

0
g(x) h(x) dx.

In the case that the functions g and h have the same monotone behavior,
the conjecture is true. The interesting case is when these functions have
different monotone behavior.
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