Homework 4 - Due 10:00 AM on Friday August 9
Solutions should be clear and organized. Make sure you justify your work.

. Prove or disprove: If z i1, 18 convergent and Z by, 1s divergent, then Z iy + by 1s
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divergent.

2. Find a value of ¢ such that z (1+e)™=2

n=1

3. Determine whether the series is convergent or divergent.
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. Can you find a sequence {a, } converging to ) such that the series Z i, diverges?
n=1

5. Find the Maclaurin series representation for each of the following series.

(Hint: It is unnecessary to take any derivatives.)
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. Evaluate the indefinite integral as a power series.
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. Find the Taylor series for each of the following functions at the indicated center.

(a) cos(z), c=m/4 (b) e +e™™, =0



