1. Let V be the set of all linear combinations of the vectors $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}7 \\ 1\end{array}\right]$. Is V a vector space? Prove or disprove.
2. Let W be the set of points on the line $y=2 x+1$. That is, let

$$
W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: y=2 x+1\right\} .
$$

Is W a vector space? Prove or disprove.
3. Prove that the set of all differentiable functions on \mathbb{R} is a vector space over \mathbb{R}.
4. Prove that the set of all rational numbers is NOT a vector space over \mathbb{R}.
5. Prove that the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that maps a vector \mathbf{v} to the vector $\mathbf{0}$ is a linear transformation.
6. Suppose that T is the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ that maps a vector

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \text { to }\left[\begin{array}{c}
-v_{1}-7 v_{3} \\
v_{2} \\
v_{1} \\
0 \\
v_{2}-v_{3}
\end{array}\right]
$$

Find a matrix A such that $T(\mathbf{v})=A \mathbf{v}$.
7. Suppose that T is the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$ that takes the coefficient vector $\mathbf{v}=\left[\begin{array}{l}v_{0} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right]$ of a polynomial $f(x)=v_{0}+v_{1} x+v_{2} x^{2}+v_{3} x^{3}+v_{4} x^{4}$ and maps it to the coefficient vector of $\int_{0}^{x} f(x) d x$. Find a matrix A such that $T(\mathbf{v})=A \mathbf{v}$.
8. Is the vector $\mathbf{w}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ in Span $\left\{\left[\begin{array}{c}-4 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$?

