Homework **6** - Linear Independence, Basis, and Eigenvalues Practice Make sure to justify your solution for each problem.

1. Determine if the columns of A form a linearly independent set.

$$A = \begin{bmatrix} -4 & -3 & 0\\ 0 & -1 & 4\\ 1 & 0 & 3\\ 5 & 4 & 6 \end{bmatrix}$$

- 2. Prove that if $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p}$ is a linearly dependent set of vectors in \mathbb{R}^n , then there exists \mathbf{v}_k in S such that $\text{Span}(S \setminus {\mathbf{v}_k}) = \text{Span}(S)$.
- 3. Find a basis for each of the following subspaces of \mathbb{R}^n .
 - (a) All vectors whose components are equal in \mathbb{R}^4 .
 - (b) All vectors whose components add up to zero in \mathbb{R}^4 .
- 4. Consider the matrix $A = \begin{bmatrix} 2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7 \end{bmatrix}$.
 - (a) Find two different bases for ColA.
 - (b) Find two different bases for NulA.
- 5. Suppose S is a 5-dimensional subspace of \mathbb{R}^6 . Prove that every basis for S can be extended to a basis for \mathbb{R}^6 by adding one more vector.
- 6. Find the eigenvalues of

7. Prove that the eigenvalues of A are the same as the eigenvalues of A^T for any square matrix A.