Homework 6 - Linear Independence, Basis, and Eigenvalues Practice

 Make sure to justify your solution for each problem.1. Determine if the columns of A form a linearly independent set.

$$
A=\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]
$$

2. Prove that if $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly dependent set of vectors in \mathbb{R}^{n}, then there exists $\mathbf{v}_{\mathbf{k}}$ in S such that $\operatorname{Span}\left(S \backslash\left\{\mathbf{v}_{\mathbf{k}}\right\}\right)=\operatorname{Span}(S)$.
3. Find a basis for each of the following subspaces of \mathbb{R}^{n}.
(a) All vectors whose components are equal in \mathbb{R}^{4}.
(b) All vectors whose components add up to zero in \mathbb{R}^{4}.
4. Consider the matrix $A=\left[\begin{array}{cccc}2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7\end{array}\right]$.
(a) Find two different bases for $\operatorname{Col} A$.
(b) Find two different bases for $N u l A$.
5. Suppose S is a 5 -dimensional subspace of \mathbb{R}^{6}. Prove that every basis for S can be extended to a basis for \mathbb{R}^{6} by adding one more vector.
6. Find the eigenvalues of

$$
B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

7. Prove that the eigenvalues of A are the same as the eigenvalues of A^{T} for any square matrix A.
