Homework 7 - Diagonalization and Orthogonal Projection Practice

 Make sure to justify your solution for each problem.1. Let $A=\left[\begin{array}{cc}2 & 3 \\ 0 & -1\end{array}\right]$. Diagonalize A, then find a formula for A^{k}.
2. Let $A=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$. Diagonalize A, then find a formula for A^{k}.
3. Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
4. For an $n \times n$ matrix M, we define

$$
e^{M}=\sum_{n=0}^{\infty} \frac{M^{n}}{n!}
$$

Find a formula for e^{A} where A is the 2×2 matrix from problem 1 .
5. Let $\mathbf{y}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]$. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{Span}(\mathbf{u})$ and the other orthogonal to \mathbf{u}.
6. Let $\mathbf{y}=\left[\begin{array}{c}6 \\ 3 \\ -2\end{array}\right], \mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}3 \\ 4 \\ 0\end{array}\right]$, and $\mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}-4 \\ 3 \\ 0\end{array}\right]$.
(a) Verify that $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$ is an orthogonal set.
(b) Find the orthogonal projection of \mathbf{y} onto $\operatorname{Span}\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$.
(c) Find the distance from \mathbf{y} to the plane in \mathbb{R}^{3} spanned by $\mathbf{u}_{\mathbf{1}}$ and $\mathbf{u}_{\mathbf{2}}$.
7. (Gram-Schmidt process) Let W be a subspace of \mathbb{R}^{4} with basis $\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{3}}\right\}$, where

$$
\mathbf{x}_{\mathbf{1}}=\left[\begin{array}{l}
3 \\
6 \\
0 \\
0
\end{array}\right], \quad \mathbf{x}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
2 \\
2 \\
-1
\end{array}\right], \quad \mathbf{x}_{\mathbf{3}}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Suppose you wish to construct an orthogonal basis for W. Show that $\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}\right\}$ is an orthogonal basis for W with

$$
\mathbf{u}_{1}=\mathrm{x}_{1}, \quad \mathbf{u}_{2}=\mathrm{x}_{2}-\frac{\mathrm{x}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}, \quad \mathbf{u}_{3}=\mathrm{x}_{3}-\frac{\mathrm{x}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathrm{x}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} .
$$

