Homework **7** - Diagonalization and Orthogonal Projection Practice Make sure to justify your solution for each problem.

1. Let
$$A = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$$
. Diagonalize A , then find a formula for A^k .

2. Let
$$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$
. Diagonalize A , then find a formula for A^k

- 3. Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
- 4. For an $n \times n$ matrix M, we define

$$e^M = \sum_{n=0}^\infty \frac{M^n}{n!}$$

Find a formula for e^A where A is the 2×2 matrix from problem 1.

- 5. Let $\mathbf{y} = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 3\\-1\\1 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in Span(\mathbf{u}) and the other orthogonal to \mathbf{u} .
- 6. Let $\mathbf{y} = \begin{bmatrix} 6\\3\\-2 \end{bmatrix}$, $\mathbf{u_1} = \begin{bmatrix} 3\\4\\0 \end{bmatrix}$, and $\mathbf{u_2} = \begin{bmatrix} -4\\3\\0 \end{bmatrix}$.
 - (a) Verify that $\{\mathbf{u_1}, \mathbf{u_2}\}$ is an orthogonal set.
 - (b) Find the orthogonal projection of ${\bf y}$ onto ${\rm Span}\{u_1,u_2\}.$
 - (c) Find the distance from \mathbf{y} to the plane in \mathbb{R}^3 spanned by $\mathbf{u_1}$ and $\mathbf{u_2}$.
- 7. (Gram-Schmidt process) Let W be a subspace of \mathbb{R}^4 with basis $\{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$, where

$$\mathbf{x_1} = \begin{bmatrix} 3\\6\\0\\0 \end{bmatrix}, \quad \mathbf{x_2} = \begin{bmatrix} 1\\2\\2\\-1 \end{bmatrix}, \quad \mathbf{x_3} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

Suppose you wish to construct an orthogonal basis for W. Show that $\{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ is an orthogonal basis for W with

$$u_1 = x_1,$$
 $u_2 = x_2 - \frac{x_2 \cdot u_1}{u_1 \cdot u_1}u_1,$ $u_3 = x_3 - \frac{x_3 \cdot u_1}{u_1 \cdot u_1}u_1 - \frac{x_3 \cdot u_2}{u_2 \cdot u_2}u_2$