Proof Strategies

August 5th

Proofs

Usually, when you are working on a proof, you will be given certain information and have a specific goal in mind. Based on the information given and the goal, you can choose the proof strategy that is most appropriate for the situation. Here is a summary of the various forms that givens and goals might take. Use capitol letters to represent a statement.

- Not A $(\neg A)$
- Use proof by contradiction. Assume A is true and try to reach a contradiction in the given setting.
- A implies $B(A \Longrightarrow B)$
- Assume A is true and prove B true
- Assume B is false and prove A is false
- A and $B(A \wedge B)$
- Prove A and B true separately to make conjunction true.
- A or $B(A \vee B)$
- Prove either A or B or both true to make disjunction true.
- A if and only if $B(A \Longleftrightarrow B)$
- Prove implication in both directions $A \Longrightarrow B$ and $B \Longrightarrow A$.

Useful Notation: In mathematics, it is useful to create notation to represent statements. Here is a list of some commonly used notation.

- ϵ - element of
- \forall - for all
- \exists - there exists

Examples:

1. Direct Proof: If a and b are two natural numbers, we say that a divides b if there is another natural number k such that $b=a k$. Using this definition, prove the following theorem.

Theorem: If a divides b and b divides c, then a divides c.

Proof: By our assumptions, and the given definition, there are natural numbers k_{1} and k_{2} such that

$$
b=a k_{1} \quad \text { and } \quad c=b k_{2}
$$

Replace b with $a k_{1}$ in the second equation to get

$$
c=b k_{2}=a k_{1} k_{2}
$$

Let $k=k_{1} k_{2}$. Now k is a natural number such that $c=a k$, so by the definition of divisibility, a divides c.
2. Contradiction: A real number, n, is rational if there exists relatively prime natural numbers p and q such that $n=\frac{p}{q}$. The real number is irrational otherwise. Using this definition, prove the following theorem.

Theorem: $\sqrt{2}$ is irrational.
Proof: Assume $\sqrt{2}$ is not irrational (i.e rational). If $\sqrt{2}$ is rational, then there exist relatively prime natural numbers p, q such that

$$
\begin{aligned}
& \sqrt{2}=\frac{p}{q} \\
\Longrightarrow & \sqrt{2} q=p \\
\Longrightarrow & 2 q^{2}=p^{2}
\end{aligned}
$$

The last equation implies that p^{2} is even which means p is even. This means there exists a natural number r such that $p=2 r$. Substituting this into the last equation gives

$$
\begin{gathered}
\Longrightarrow 2 q^{2}=(2 r)^{2} \\
\Longrightarrow 2 q^{2}=4 r^{2} \\
\Longrightarrow q^{2}=2 r^{2}
\end{gathered}
$$

This means q^{2} is even and therefore q is even. This is a contradiction to p and q being relatively prime since they both share a factor of 2 .

Functions, Introduction to Limits and Continuity

Functions

Let D and C be two sets. The notation $f: D \rightarrow C$ represents a function between C and D. A function is a rule that assigns to each element of D exactly one element of C.

Vocabulary:

- Domain: Valid inputs
- Codomain: Possible outputs
- Range: Actual outputs (for $x \in D, f(x) \in C$ is called the image of x under f)

Examples:

1. Let $f(x)=x^{2}$. All real numbers can be inputted into the function, but only non-negative numbers are outputs. The domain is \mathbb{R}, the codomain is \mathbb{R} and the range is $[0, \infty)$.
2. Let $f(x)=\lceil x\rceil$. This is called the ceiling function where every real number is rounded up to the nearest integer. The domain is \mathbb{R} the codomain is \mathbb{R} and the range is \mathbb{Z} the integers.

Limits:

Limits are the tool most often used to define continuity and differentiability of functions.

Definition: The limit of $f(x)$ as x approaches a value c equals a value L is written as follows.

$$
\lim _{x \rightarrow c} f(x)=L
$$

To show this is a true statement, you need to verify that $\forall \epsilon>0 \exists \delta>0$ such that $|x-c|<\delta$ implies $|f(x)-L|<\epsilon$.

Examples:

1. $\lim _{x \rightarrow 1}(x+1)=2$

Let $\epsilon>0$ be given. We want to show

$$
|x-1|<\delta \Longrightarrow|f(x)-2|<\epsilon
$$

Notice that $|f(x)-2|=|x+1-2|=|x-1|$. In order to prove the limit using the definition, we choose $\delta=\epsilon$ to get

$$
|f(x)-2|=|x-1|<\delta=\epsilon
$$

The point here is that we have the freedom to choose any delta that works. In this case, we choose delta to be whatever the given epsilon is.
2. $\lim _{x \rightarrow 3}\left(x^{2}-9\right)=0$

Let $\epsilon>0$ be given. Notice that

$$
|x-3|<\delta \Longrightarrow\left|x^{2}-9\right|=|x-3||x+3|<\delta|x+3|
$$

Since the limits only consider values of x that are close to 3 , we can start by assuming that x is within 1 of 3 . This means $|x-3|<1$. This means $|x+3|<7$. Let $\delta=\frac{\epsilon}{7}$. Then we have

$$
|x-3|<\delta \Longrightarrow\left|x^{2}-9\right|=|x-3||x+3|<\delta|x+3|<\frac{\epsilon}{7} * 7=\epsilon
$$

One Sided Limits: When we only care about numbers approaching a value from the left (respectively right), then we are considering left sided (resp. right) limits.

Left Sided: To prove $\lim _{x \rightarrow c^{-}} f(x)=L$ we need to show that $\forall \epsilon>0 \exists \delta>0$ such that $c-x<\delta \Longrightarrow|f(x)-L|<\epsilon$.

Right Sided: To prove $\lim _{x \rightarrow c^{+}} f(x)=L$ we need to show that $\forall \epsilon>0 \exists \delta>0$ such that $x-c<\delta \Longrightarrow|f(x)-L|<\epsilon$.

Example: Let $f(x)=\frac{x}{|x|}$. Then,

$$
\lim _{x \rightarrow 0^{-}} f(x)=-1 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=1
$$

Since the left and right sided limits are not equal, the two sided limit does not exist. (Note, $f(x)$ is not continuous at $x=0$).

Definition: A function $f(x)$ is continuous at $x=c$ if $f(c)$ is defined and $\lim _{x \rightarrow c} f(x)=$ $f(c)$.

There are other definitions of continuity, but this definition will work for this class.

Infinite Limits: When we care about how a function behaves as we plug larger and larger values into the function (end behavior), we want to find an infinite limit.

To prove $\lim _{x \rightarrow \infty} f(x)=L$, we need to show that $\forall \epsilon>0 \exists M>0$ such that $x>M \Longrightarrow|f(x)-L|<\epsilon$. There is a similar definition for negative end behavior.

To prove $\lim _{x \rightarrow \infty} f(x)=\infty$, we need to show that $\forall N>0 \exists M>0$ such that $x>M \Longrightarrow f(x)>N$.

Example: Prove $\lim _{x \rightarrow \infty} \frac{2 x}{x-1}=2$.
Let $\epsilon>0$ be given. We need to find an M depending on ϵ so that $x>M \Longrightarrow$ $|f(x)-L|<\epsilon$. We start with some scratch work.

$$
|f(x)-L|=\left|\frac{2 x}{x-1}-2\right|=\left|\frac{2}{x-1}\right|
$$

We want

$$
\left|\frac{2}{x-1}\right|<\epsilon
$$

Equivalently,
We want

$$
\frac{2}{\epsilon}+1<x
$$

The absolute values went away because we are dealing with large positive values of x. So we let $M=\frac{2}{\epsilon}+1$ and for $x>M$, we get

$$
|f(x)-L|=\left|\frac{2 x}{x-1}-2\right|=\left|\frac{2}{x-1}\right|<\left|\frac{2}{\frac{2}{\epsilon}+1-1}\right|=\epsilon
$$

The Squeeze Theorem: If $f(x)<g(x)<h(x)$ for all x such that $|x-c|<\delta$ and $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L$, then $\lim _{x \rightarrow c} g(x)=L$.

Example: Evaluate $\lim _{x \rightarrow 0} x \cos (x)$ using the squeeze theorem.
We know that $|\cos (x)| \leq 1$ for all x. This means,

$$
-x \leq x \cos (x) \leq x
$$

And since $\lim _{x \rightarrow 0} \pm x=0$, the same must hold for $x \cos (x)$.

