Proofs

Usually, when you are working on a proof, you will be given certain information and have a specific goal in mind. Based on the information given and the goal, you can choose the proof strategy that is most appropriate for the situation. Here is a summary of the various forms that givens and goals might take. Use capitol letters to represent a statement.

- Not A $(\neg A)$
 - Use proof by contradiction. Assume A is true and try to reach a contradiction in the given setting.
- A implies $B (A \implies B)$
 - Assume A is true and prove B true
 - Assume *B* is false and prove *A* is false
- A and B $(A \wedge B)$
 - Prove A and B true separately to make conjunction true.
- $A \text{ or } B (A \lor B)$
 - Prove either A or B or both true to make disjunction true.
- A if and only if $B (A \iff B)$
 - Prove implication in both directions $A \implies B$ and $B \implies A$.

Useful Notation: In mathematics, it is useful to create notation to represent statements. Here is a list of some commonly used notation.

- ϵ element of
- \forall for all
- \exists there exists

Examples:

1. **Direct Proof**: If a and b are two natural numbers, we say that a divides b if there is another natural number k such that b = ak. Using this definition, prove the following theorem.

Theorem: If a divides b and b divides c, then a divides c.

Proof: By our assumptions, and the given definition, there are natural numbers k_1 and k_2 such that

 $b = ak_1$ and $c = bk_2$

Replace b with ak_1 in the second equation to get

 $c = bk_2 = ak_1k_2$

Let $k = k_1 k_2$. Now k is a natural number such that c = ak, so by the definition of divisibility, a divides c.

2. Contradiction: A real number, n, is rational if there exists relatively prime natural numbers p and q such that $n = \frac{p}{q}$. The real number is irrational otherwise. Using this definition, prove the following theorem.

Theorem: $\sqrt{2}$ is irrational.

Proof: Assume $\sqrt{2}$ is not irrational (i.e rational). If $\sqrt{2}$ is rational, then there exist relatively prime natural numbers p, q such that

$$\sqrt{2} = \frac{p}{q}$$
$$\implies \sqrt{2}q = p$$
$$\implies 2q^2 = p^2$$

The last equation implies that p^2 is even which means p is even. This means there exists a natural number r such that p = 2r. Substituting this into the last equation gives

$$\implies 2q^2 = (2r)^2$$
$$\implies 2q^2 = 4r^2$$
$$\implies q^2 = 2r^2$$

This means q^2 is even and therefore q is even. This is a contradiction to p and q being relatively prime since they both share a factor of 2.

Functions, Introduction to Limits and Continuity

Functions

Let D and C be two sets. The notation $f: D \to C$ represents a function between C and D. A function is a rule that assigns to each element of D exactly one element of C.

Vocabulary:

• Domain: Valid inputs

- Codomain: Possible outputs
- Range: Actual outputs (for $x \in D$, $f(x) \in C$ is called the *image* of x under f)

Examples:

1. Let $f(x) = x^2$. All real numbers can be inputted into the function, but only non-negative numbers are outputs. The domain is \mathbb{R} , the codomain is \mathbb{R} and the range is $[0, \infty)$.

2. Let $f(x) = \lceil x \rceil$. This is called the ceiling function where every real number is rounded up to the nearest integer. The domain is \mathbb{R} the codomain is \mathbb{R} and the range is \mathbb{Z} the integers.

Limits:

Limits are the tool most often used to define continuity and differentiability of functions.

Definition: The limit of f(x) as x approaches a value c equals a value L is written as follows.

$$\lim_{x \to c} f(x) = L$$

To show this is a true statement, you need to verify that $\forall \epsilon > 0 \exists \delta > 0$ such that $|x - c| < \delta$ implies $|f(x) - L| < \epsilon$.

Examples:

1. $\lim_{x \to 1} (x+1) = 2$

Let $\epsilon > 0$ be given. We want to show

$$|x-1| < \delta \implies |f(x)-2| < \epsilon$$

Notice that |f(x) - 2| = |x + 1 - 2| = |x - 1|. In order to prove the limit using the definition, we choose $\delta = \epsilon$ to get

$$|f(x) - 2| = |x - 1| < \delta = \epsilon$$

The point here is that we have the freedom to choose any delta that works. In this case, we choose delta to be whatever the given epsilon is.

2. $\lim_{x\to 3} (x^2 - 9) = 0$

Let $\epsilon > 0$ be given. Notice that

$$|x-3| < \delta \implies |x^2-9| = |x-3||x+3| < \delta |x+3|$$

Since the limits only consider values of x that are close to 3, we can start by assuming that x is within 1 of 3. This means |x - 3| < 1. This means |x + 3| < 7. Let $\delta = \frac{\epsilon}{7}$. Then we have

$$|x-3| < \delta \implies |x^2 - 9| = |x-3||x+3| < \delta|x+3| < \frac{\epsilon}{7} * 7 = \epsilon$$

One Sided Limits: When we only care about numbers approaching a value from the left (respectively right), then we are considering left sided (resp. right) limits.

Left Sided: To prove $\lim_{x\to c^-} f(x) = L$ we need to show that $\forall \epsilon > 0 \exists \delta > 0$ such that $c - x < \delta \implies |f(x) - L| < \epsilon$.

Right Sided: To prove $\lim_{x\to c^+} f(x) = L$ we need to show that $\forall \epsilon > 0 \exists \delta > 0$ such that $x - c < \delta \implies |f(x) - L| < \epsilon$.

Example: Let $f(x) = \frac{x}{|x|}$. Then,

$$\lim_{x \to 0^{-}} f(x) = -1 \text{ and } \lim_{x \to 0^{+}} f(x) = 1$$

Since the left and right sided limits are not equal, the two sided limit does not exist. (Note, f(x) is not continuous at x = 0).

Definition: A function f(x) is continuous at x = c if f(c) is defined and $\lim_{x\to c} f(x) = f(c)$.

There are other definitions of continuity, but this definition will work for this class.

Infinite Limits: When we care about how a function behaves as we plug larger and larger values into the function (end behavior), we want to find an infinite limit.

To prove $\lim_{x\to\infty} f(x) = L$, we need to show that $\forall \epsilon > 0 \exists M > 0$ such that $x > M \implies |f(x) - L| < \epsilon$. There is a similar definition for negative end behavior.

To prove $\lim_{x\to\infty} f(x) = \infty$, we need to show that $\forall N > 0 \exists M > 0$ such that $x > M \implies f(x) > N$.

Example: Prove $\lim_{x\to\infty} \frac{2x}{x-1} = 2$.

Let $\epsilon > 0$ be given. We need to find an M depending on ϵ so that $x > M \implies$ $|f(x) - L| < \epsilon$. We start with some scratch work.

$$|f(x) - L| = \left|\frac{2x}{x-1} - 2\right| = \left|\frac{2}{x-1}\right|$$

We want

$$\left|\frac{2}{x-1}\right| < \epsilon$$

Equivalently, We want

$$\frac{2}{\epsilon} + 1 < x$$

The absolute values went away because we are dealing with large positive values of x. So we let $M = \frac{2}{\epsilon} + 1$ and for x > M, we get

$$|f(x) - L| = \left|\frac{2x}{x - 1} - 2\right| = \left|\frac{2}{x - 1}\right| < \left|\frac{2}{\frac{2}{\epsilon} + 1 - 1}\right| = \epsilon$$

The Squeeze Theorem: If f(x) < g(x) < h(x) for all x such that $|x - c| < \delta$ and $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$, then $\lim_{x\to c} g(x) = L$.

Example: Evaluate $\lim_{x\to 0} x \cos(x)$ using the squeeze theorem.

We know that $|\cos(x)| \leq 1$ for all x. This means,

$$-x \le x \cos(x) \le x$$

And since $\lim_{x\to 0} \pm x = 0$, the same must hold for $x \cos(x)$.