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Proofs

Usually, when you are working on a proof, you will be given certain information
and have a specific goal in mind. Based on the information given and the goal, you
can choose the proof strategy that is most appropriate for the situation. Here is a
summary of the various forms that givens and goals might take. Use capitol letters
to represent a statement.

• Not A (¬A)

– Use proof by contradiction. Assume A is true and try to reach a contra-
diction in the given setting.

• A implies B (A =⇒ B)

– Assume A is true and prove B true

– Assume B is false and prove A is false

• A and B (A ∧B)

– Prove A and B true separately to make conjunction true.

• A or B (A ∨B)

– Prove either A or B or both true to make disjunction true.

• A if and only if B (A ⇐⇒ B)

– Prove implication in both directions A =⇒ B and B =⇒ A.

Useful Notation: In mathematics, it is useful to create notation to represent state-
ments. Here is a list of some commonly used notation.

• ε - element of

• ∀ - for all

• ∃ - there exists

Examples:

1. Direct Proof : If a and b are two natural numbers, we say that a divides b if
there is another natural number k such that b = ak. Using this definition, prove the
following theorem.

Theorem: If a divides b and b divides c, then a divides c.



Proof : By our assumptions, and the given definition, there are natural numbers
k1 and k2 such that

b = ak1 and c = bk2

Replace b with ak1 in the second equation to get

c = bk2 = ak1k2

Let k = k1k2. Now k is a natural number such that c = ak, so by the definition of
divisibility, a divides c.

2. Contradiction: A real number, n, is rational if there exists relatively prime
natural numbers p and q such that n = p

q
. The real number is irrational otherwise.

Using this definition, prove the following theorem.

Theorem:
√

2 is irrational.

Proof : Assume
√

2 is not irrational (i.e rational). If
√

2 is rational, then there
exist relatively prime natural numbers p, q such that

√
2 =

p

q

=⇒
√

2q = p

=⇒ 2q2 = p2

The last equation implies that p2 is even which means p is even. This means there
exists a natural number r such that p = 2r. Substituting this into the last equation
gives

=⇒ 2q2 = (2r)2

=⇒ 2q2 = 4r2

=⇒ q2 = 2r2

This means q2 is even and therefore q is even. This is a contradiction to p and q
being relatively prime since they both share a factor of 2.

Functions, Introduction to Limits and Continuity

Functions

Let D and C be two sets. The notation f : D → C represents a function between C
and D. A function is a rule that assigns to each element of D exactly one element of C.

Vocabulary :

• Domain: Valid inputs



• Codomain: Possible outputs

• Range: Actual outputs (for x ∈ D, f(x) ∈ C is called the image of x under f)

Examples:

1. Let f(x) = x2. All real numbers can be inputted into the function, but only
non-negative numbers are outputs. The domain is R, the codomain is R and the range
is [0,∞).

2. Let f(x) = dxe. This is called the ceiling function where every real number is
rounded up to the nearest integer. The domain is R the codomain is R and the range
is Z the integers.

Limits:
Limits are the tool most often used to define continuity and differentiability of

functions.

Definition: The limit of f(x) as x approaches a value c equals a value L is written
as follows.

lim
x→c

f(x) = L

To show this is a true statement, you need to verify that ∀ ε > 0 ∃ δ > 0 such
that |x− c| < δ implies |f(x)− L| < ε.

Examples:

1. limx→1(x+ 1) = 2

Let ε > 0 be given. We want to show

|x− 1| < δ =⇒ |f(x)− 2| < ε

Notice that |f(x) − 2| = |x + 1 − 2| = |x − 1|. In order to prove the limit using
the definition, we choose δ = ε to get

|f(x)− 2| = |x− 1| < δ = ε

The point here is that we have the freedom to choose any delta that works. In
this case, we choose delta to be whatever the given epsilon is.

2. limx→3(x
2 − 9) = 0

Let ε > 0 be given. Notice that

|x− 3| < δ =⇒ |x2 − 9| = |x− 3||x+ 3| < δ|x+ 3|
Since the limits only consider values of x that are close to 3, we can start by

assuming that x is within 1 of 3. This means |x − 3| < 1. This means |x + 3| < 7.
Let δ = ε

7
. Then we have



|x− 3| < δ =⇒ |x2 − 9| = |x− 3||x+ 3| < δ|x+ 3| < ε

7
∗ 7 = ε

One Sided Limits: When we only care about numbers approaching a value from
the left (respectively right), then we are considering left sided (resp. right) limits.

Left Sided : To prove limx→c− f(x) = L we need to show that ∀ ε > 0∃ δ > 0 such
that c− x < δ =⇒ |f(x)− L| < ε.

Right Sided : To prove limx→c+ f(x) = L we need to show that ∀ ε > 0 ∃ δ > 0 such
that x− c < δ =⇒ |f(x)− L| < ε.

Example: Let f(x) = x
|x| . Then,

lim
x→0−

f(x) = −1 and lim
x→0+

f(x) = 1

Since the left and right sided limits are not equal, the two sided limit does not
exist. (Note, f(x) is not continuous at x = 0).

Definition: A function f(x) is continuous at x = c if f(c) is defined and limx→c f(x) =
f(c).

There are other definitions of continuity, but this definition will work for this class.

Infinite Limits: When we care about how a function behaves as we plug larger
and larger values into the function (end behavior), we want to find an infinite limit.

To prove limx→∞ f(x) = L, we need to show that ∀ ε > 0 ∃ M > 0 such that
x > M =⇒ |f(x)− L| < ε. There is a similar definition for negative end behavior.

To prove limx→∞ f(x) = ∞, we need to show that ∀ N > 0 ∃ M > 0 such that
x > M =⇒ f(x) > N .

Example: Prove limx→∞
2x
x−1 = 2.

Let ε > 0 be given. We need to find an M depending on ε so that x > M =⇒
|f(x)− L| < ε. We start with some scratch work.

|f(x)− L| =
∣∣∣∣ 2x

x− 1
− 2

∣∣∣∣ =

∣∣∣∣ 2

x− 1

∣∣∣∣
We want ∣∣∣∣ 2

x− 1

∣∣∣∣ < ε

Equivalently,
We want

2

ε
+ 1 < x



The absolute values went away because we are dealing with large positive values
of x. So we let M = 2

ε
+ 1 and for x > M , we get

|f(x)− L| =
∣∣∣∣ 2x

x− 1
− 2

∣∣∣∣ =

∣∣∣∣ 2

x− 1

∣∣∣∣ < ∣∣∣∣ 2
2
ε

+ 1− 1

∣∣∣∣ = ε

The Squeeze Theorem: If f(x) < g(x) < h(x) for all x such that |x − c| < δ
and limx→c f(x) = limx→c h(x) = L, then limx→c g(x) = L.

Example: Evaluate limx→0 x cos(x) using the squeeze theorem.

We know that | cos(x)| ≤ 1 for all x. This means,

−x ≤ x cos(x) ≤ x

And since limx→0±x = 0, the same must hold for x cos(x).


