
QUANTUM A-CURVES OF TORUS KNOTS

NATHAN DRUIVENGA

Abstract.

1. Introduction

2. The Chern-Simons Line Bundle

The goal of this section is to defined a bundle over the character variety of the torus
boundary of a 3-manifold.

2.1. The Representation and Character Varieties. Let G = 〈ai | rj〉 be a finitely
generated group with n generators andm relations. A representation ρ : G → SL2(C)
is a homomorphism determined by a choice of matrices Ai ∈ SL2(C) such that the
image of each relation evaluates to the identity in SL2(C). Denote by Rep(G) ⊂∏n

i=1 SL2(C) the space of all representations of G under the relations rj and embed
Rep(G) into C4n by ρ 7→ (ρ(a1), ρ(a2), ..., ρ(an)). Under this embedding, Rep(G) is an
algebraic variety called the representation variety. Specifically, Rep(G) is cut out
by 4m+ n equations where 4m equations come from the m relations and n equations
from the fact that det(ρ(ai)) = 1 for each 1 ≤ i ≤ n.

There is an action of SL2(C) on Rep(G) by conjugation. The quotient of Rep(G)
by this action does not yield a Hausdorff space. To resolve this problem, identify
representations of G that have the same character. A character of a representation
ρ ∈ Rep(G) is a homomorphism χρ : G → C defined by χρ(g) = tr(ρ(g)), for each
g ∈ G, where tr(ρ(g)) is the trace of the matrix ρ(g). The character variety of
G, denoted χ(G), is the space of all characters of elements of Rep(G). The variety
χ(G) can be thought of as the categorical quotient Rep(G)/SL2(C) where elements
of Rep(G) with the same character have been identified. The fact that χ(G) is an
algebraic variety does not follow as easily as with Rep(G), but with some effort it can
be shown [10].

2.2. The Bundle. [9] Let M be a 3-manifold with torus boundary T . Let {µ, λ} be
the standard basis for π1(T ) and denote by χ(T ) (respectively χ(M)) the character
variety χ(π1(T )) (respectively χ(π1(M))). Define a map v : Hom(π1(T ),C) → χ(T )
by v(f) = (α 7→ e2πif(α)). This is a 2:1 branch covering map with covering group
G ∼= Z⊕ Z o Z2 which has presentation,

G = 〈x, y, b |xy − yx = bxbx = byby = b2 = 1〉.
1
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Send each f ∈ Hom(π1(T ),C) to the pair (f(µ), f(λ)) ∈ C×C. With this identifi-
cation, the action of G on Hom(π1(T ),C) is

x(z, w) = (z + 1, w), y(z, w) = (z, w + 1), b(z, w) = (−z,−w).

Extend the this action to the trivial bundle Hom(π1(T ),C)×C∗, where C∗ are the
nonzero complex numbers, by

x(z, w, ζ) = (z+1, w, ζe2πiw), y(z, w, ζ) = (z, w+1, ζe−2πiz), b(z, w, ζ) = (−z,−w, ζ).

Define the Chern-Simons line bundle over the character variety χ(T ) as the quotient
bundle

CS(T ) = Hom(π1(T ),C)× C∗
/
G.

As explained in [9], although the action has been defined by a fixed basis of π1(T ),
the action only depends on the orientation of T . Therefore, for the remainder of the
paper, elements of CS(T ) are written [z, w, ζ] with the assumption of a fixed standard
basis {µ, λ}.

The Chern-Simons section is a map CSM : χ(M)→ CS(T ).

(2.1) CSM : ρ 7→
[
z, w, e2πics(ρ)

]
where cs(ρ) is the Chern-Simons invariant associated to the representation ρ.

The following theorem shows how to calculate the change in the Chern-Simons
invariant along a path of representations.

Theorem 2.1 (P. Kirk, E. Klassen [9]). Let M denote an oriented 3-dimensional
manifold whose boundary ∂M = T consists of a 2-dimensional torus. Let {µ, λ}
denote an oriented basis for π1(T ). Let ρ(t) : π1(M)→ SL2((C)), t ∈ [0, 1], be a path
of representations where (z(t), w(t)) denote a lift of ρ(t)|π1(T ) to C2. Suppose

CSM(ρ(t)) = [z(t), w(t), cs(z(t))]

for all t. Then,

cs(z(1)) · cs(z(0))−1 = e2πi
∫ 1
0 z(t)w

′(t)−z′(t)w(t)dt

and if z(0) corresponds to the trivial representation, cs(z(0)) = 1.

Assuming a path of representations is followed, the formula from Theorem 2.1 can
be rewritten as

(2.2) cs(z) = cs(z0) · e2πi
∫ z
zo
zdw−wdz

which gives a local expression of the Chern-Simons section as a function of z in a
neighborhood of z0.
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3. The A-Polynomial

The A-polynomial is the defining polynomial of an algebraic curve in C∗ × C∗
where C∗ are the nonzero complex numbers [1]. Let K ⊂ S3 be a knot and M be the
complement of a regular neighborhood of K. Then M is a compact manifold with
boundary homeomorphic to a torus, ∂M = T .

The fundamental group π1(T ) is a free abelian group with two generators. Let
{µ, λ} be the standard basis for π1(T ). Consider the subset Rep∆(π1(M)) of Rep(π1(M))
consisting of upper triangular SL2(C) representations. Set

ρ(µ) =

(
m ?
0 m−1

)
and ρ(λ) =

(
l ?
0 l−1

)
and let ε : Rep∆(π1(M)) → C∗ × C∗ be the eigenvalue map defined by ε(ρ) = (m, l).
Let Z be the Zariski closure of ε(Rep∆(π1(M))) in C∗×C∗. Each of the components of
Z are one dimensional [5]. The components are hyper-surfaces and can be cut out by
a single polynomial unique up to multiplication by a constant. The A-polynomial,
AK(m, l), is the product of all such defining polynomials. The A-polynomial can be
taken to have relatively prime integer coefficients and is well defined up to a unit. The
abelian component of Z will have defining polynomial l−1 and thus the A-polynomial
can be factored as AK(m, l) = (l − 1)A′K(m, l) [1].

3.1. Torus Knots. Denote by T (a, b) the (a, b)-torus knot. The A-polynomials of
torus knots are [1]

AT (p,q)(m, l) =

 (l − 1)(lm2b + 1) : p = 2, b > 2

(l − 1)(l2m2ab − 1) : a, b > 2

The A-polynomial gives a parameterization of the representation space. Lift each
component of the zero locus of the A-polynomial to a curve in C× C by using loga-
rithmic coordinates. Specifically, let m = e2πiz and l = −e2πiw. Using the principal
branch of log, the A-curves of the (a, b)-torus knots are cut out by

(3.1) AT (a,b)(z, w) =

{
w(w + 2bz) : a = 2, b > 2

w(w + abz)(w + 1
2

+ abz) : a, b > 2

4. Quantum Curves

4.1. Quantization. In the language of physics, the A-polynomial, A(z, w), cuts out
a Lagrangian subvariety of C× C endowed with the symplectic form

(4.1) 2πih dz ∧ dw.
The A-curve is the phase space of analytically continued Chern-Simons theory [8] with
a classical state being a SL2(C) representation up to trace equivalence. The goal is
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to promote the A-curve to an operator Â(q,M,L) that will annihilate cs(z) (more
precisely, the section CSM) (2.1) for some operators M,L quantizing m, l. This is
reminiscent of the AJ-conjecture [6] where the recurrence relation, α̃K(q,M,L) [7], of
the colored Jones function is expected to semi-classically limit to the A-polynomial.
In that setting, the operators M and L are elements of a ring called the quantum
torus and satisfy the relation LM = q2ML. In the case at hand, it will be shown
that the following operators acting on holomorphic functions lead to the same non-
commutativity relation.

(4.2) M = e2πiz and L = eh
d
dz

+2πiw (q = e
πi
h )

Notice that as h → 0, M → e2πiz = m and L → e2πiw = −l. In this sense, the
operators are a coherent quantization of the classical coordinates. It will be seen
that in the case of torus knots, the annihilator of certain power of the Chern-Simons
section naturally limits to the A-polynomial.

4.2. The Operator L. The action of M = e2πiz on holomorphic functions of z is by

multiplication. The action of L = eh
d
dz

+2πiw(z) needs more clarification.

Lemma 4.1. The operator L = eh
d
dz

+2πiw(z) acts on holomorphic functions of z as

L(f(z)) = f(z + h) exp

(
2πi

h

∫ z+h

z

w(u)du

)
.

Proof : If g(z, t) = et(h
d
dz

+2πiw(z))f(z), then g(z, t) satisfies the partial differential
equation

∂g

∂t
− h∂g

∂z
= 2πiw · g

with boundary condition g(z, 0) = f(z).
Let z(t) = z−ht and G(t) = g(z(t), t). With this substitution, the above PDE can

be written as the ODE G′(t) = 2πiw(z(t)) ·G(t) where G(0) = f(z). The solution is

G(t) = f(z) exp

(
2πi

∫ t

0

w(z(s))ds

)
.

Replacing z with z + th and setting t = 1 yields

g(z, 1) = f(z + h) exp

(
2πi

∫ 1

0

w(z + (1− s)h)ds

)
.

Now substitute u = z + (1− s)h to conclude

L(f(z)) = g(z, 1) = f(z + h) exp

(
2πi

h

∫ z+h

z

w(u)du

)
. �

Corollary 4.1. The operators M and L acting on holomorphic functions of z satisfy
the relation LM = q2ML where q = e

πi
h .
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Proof : Let f(z) be a holomorphic function over C. By Lemma 4.1 and the defini-
tion of M ,

LM(f(z)) = L(e2πizf(z)) = e2πi(z+h)f(z + h) exp

(
2πi

h

∫ z+h

z

w(u)du

)
= q2ML(f(z)) �

5. The Â curve of torus knots

Let A ⊂ C × C be the zero locus of the A-polynomial in logarithmic coordinates
(z, w) ∈ C × C. There is a projection map π : C × C → C onto the first factor
given by π(z, w) = z. There are two kinds of ”singular points” on A, those where
A is genuinely singular as an algebraic curve and those where the projection map
restricted to A is not a local submersion. Away from the finite set of singular points

there is a unique tangent vector d̃
dz

such that π∗

(
d̃
dz

)
= d

dz
. Define an operator L

acting on local holomorphic sections of the Chern-Simons line bundle over A by

(5.1) L = eh
d̃
dz

+2πiw(z).

where w(z) is a local parameterization of the A-curve. This operator acts locally
on holomorphic sections of the Chern-Simons bundle in the same way that L from
Lemma 4.1 acts on holomorphic functions of z.

5.1. T(2,b) knots. The A-polynomial of the (2, b)-torus knot (3.1) has two factors.
The factor w corresponds to the abelian component of the character variety while
w + 2bz defines the geometric component denoted for now by Ag. On the geometric
component, there is a local expression w(z) = −2bz which defines a plane curve with
no singular points. Fix a point z0 ∈ Ag. From Theorem 2.1 there is a local expression
for the Chern-Simons section given by

cs(z) = cs(z0) · e2πi
∫ z
zo
zdw−wdz

where the integral is assumed to be over a path from z0 to z contained in Ag. Let

h = 1
N

with N ∈ N and consider cs
1
h (z) as a section of the N -fold tensor power

of the bundle CS(T ) defined in 2.2. The natural number N represents the level of
quantization.

Lemma 5.1. The operator L = eh
d
dz

+2πiw(z) acts on cs
1
h (z) as

L
(
cs

1
h (z)

)
= cs

1
h (z) exp

(
2πi

h

∫ z+h

z

zdw

)
Proof : The lemma follows from a direct application of Lemma 4.1.
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Theorem 5.1. On the component of the A-curve parameterized by w(z) = −2bz (3.1),

the section cs
1
h (z) of the N th tensor power bundle CSN(T ), where T is the boundary

of the T (2, b) knot complement in S3, is annihilated by the operator

(5.2) Â = 1− q2bM2bL

Proof : Recall that h = 1
N

and q = eπih. The parameterization w(z) = −2bz gives
zdw = −2bz dz. By Lemma 5.1,

L
(
cs

1
h (z)

)
= cs

1
h (z) exp

(
2πi

h

∫ z+h

z

zdw

)
= cs

1
h (z) exp

(
−2πib

h
(2zh+ h2)

)
= cs

1
h (z)(e2πiz)−2b(eπih)−2b

= q−2bM−2b(cs
1
h (z))

Therefore, (q−2bM−2b − L)cs
1
h (z) = 0. Multiplying on the left by q2bM2b gives the

desired result.
�

Corollary 5.1. Â
∣∣
q=−1

=
AT (2,b)(m,l)

l−1

Proof : When q = −1, L = −l. Therefore, Â
∣∣
q=−1

= lm2b + 1.
�

5.2. T(a,b) knots. The A-curve of T (a, b) torus knots has two geometric compo-
nents. Denote by (A1, w1) the component corresponding to the factor w + 1

2
+ abz

and (A2, w2) the component corresponding to w + abz from (3.1). The operator L
(5.1) changes depending on the parameterization. Let Li be the operator defined by
the parameterization wi(z), for i = 1, 2. With this notation, the operators satisfy
L1 = −L2. Denote by csi(z) the Chern-Simons section over the component (Ai, wi).

Theorem 5.2. Over the (Ai, wi)-component of the A-curve parameterized by wi(z)

the section cs
1
h
i (z) of the N th tensor power bundle CSN(T ), where T is the boundary

of the T (a, b) knot complement in S3, is annihilated by the operator

(5.3) Âi = 1− qabMabLi

Proof : The proof that cs
1
h
i (z) is annihilated by Âi on either component is almost

identical to that of Theorem 5.1 since zdwi = −abz.
�

Corollary 5.2. The operator Â1Â2 = (1− qabMabL1)(1− qabMabL2) annihilates the

section cs
1
h (z) defined over both geometric components of the A curve.
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Proof : It must be shown that Â1Â2 annihilates both cs
1
h
1 (z) and cs

1
h
2 (z). By

Theorem 5.2,

(1− qabMabL1)(1− qabMabL2)cs
1
h
1 (z) = (1− qabMabL1)2cs

1
h
1 (z) = 0

(1− qabMabL1)(1− qabMabL2)cs
1
h
2 (z) = 0

�

Corollary 5.3. (Â1 ◦ Â2)
∣∣
q=−1

=
AT (a,b)(m,l)

l−1

Proof : Â1 ◦ Â2 = (1− qabMabL1)(1− qabMabL2) = (1− qabMabL1)(1 + qabMabL1)
If q = −1, then without loss of generality, L1 = −l. After this replacement, the
A-polynomial of T (a, b) (without the (l − 1) factor) is recovered.

�

Remark: The factor (l − 1) of the A-polynomial corresponds to w = 0. In this
case, cs(z) = 1 and L(f(z)) = f(z + h). Therefore, the operator L − 1 annihilates

cs
1
h (z).

6. Conclusions and Discussion

As mentioned in the introduction, the motivation for finding an annihilator of
the Chern-Simons section (2.1) stems from a relationship between the Witten path
integral [12] and the Jones polynomial.

6.1. Chern-Simons Theory. Let M be a compact oriented 3-manifold with a single
torus boundary and consider the principal SL2(C)-bundle, P , over M . Let A be an
sl2(C)-valued one form on M and define the Chern-Simons action on A by

cs(A) =
t

8π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
+

t̃

8π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
where Tr denotes the trace and t = N + is, t = N − is are coupling constants. The
integer N is called the level and s ∈ R(or iR) is introduced to ensure the action
behaves consistently under a change of orientation on M [8]. Using this action, define
the following partition function by means of the Feynman path integral.

(6.1) Z(M) =

∫
A
eics(A)DA

The partition function is not rigorously defined since the measure, DA, is postulated
on the (infinite dimensional) space, A, of connections on M . Proceeding heuristically,
it was shown that in the case of compact gauge group, (6.1) satisfies the same skein
relation as the colored Jones polynomial [12].

To make a more concrete connection between the partition function and the cur-
rent paper, it is prudent to discuss quantum perturbation theory. The analytically
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continued partition function can be written as a finite sum over contributions from
different critical points,

(6.2) Z(M,h, h̃) =
∑
α,α̃

nα,α̃Z
α(M,h)Z

α̃
(M, h̃)

where h = 1
t

and h̃ = 1
t̃
, nα,α̃ ∈ Z, and α, α̃ label the local branch and conjugate

branch of the A-curve. In the limit, h → 0, the holomorphic blocks, Zα(M,h), have
asymptotic expansion given by [3],

(6.3) Zα(M,h) ∼ exp

(
1

h
Sα0 −

1

2
δα log h+

∞∑
n=1

Sαnh
n−1

)
The leading order term, Sα0 (z) = 2

∫ z
A(m,l)=0

w(z)dz is the value of the classical Chern-

Simons section on the αth branch of the A-curve. It is related to (2.2) by an application
of integration by parts. Given a classical state, (i.e. a flat connection A) there is an
associated flat bundle, EA, over M . The term δα is the following difference in the
dimension of the cohomology groups of the bundle [3] and is therefore locally constant.

δα = dim(H1(M,EA)− dim(H0(M,EA))

The term Sα1 (z) = 1
2

log(T (z)) is the twisted Reidemeister torsion with coefficients in
the adjoint representation[4].

The goal is to extend the defining polynomial of the A-curve to an operator,
Â(q,M,L) =

∑∞
i=0 ai(q,M)Li, that annihilates the partition function (6.2). The

equation

(6.4) ÂZ = 0

leads to an infinite hierarchy of difference equations that can be solved recursively
given the initial condition Sα0 (z) [3]. In the case of torus knots, the Reidemeister
torsion is locally constant along the geometric component of the A-curve. Therefore,
all the higher order terms in the asymptotic expansion (6.3) are left constant under the

action of L. Thus the local partition function and the local operator Â are completely
determined by the Chern-Simons section.

6.2. Matching Results. One of the main goals of this paper is to set up the frame-
work to prove the AJ-conjecture [6] which is a proposed relationship between the A-
polynomial and colored Jones polynomial of a knot K ⊂ S3. The colored Jones poly-
nomial is a function that assigns to each n ∈ N a Laurent polynomial JK(n) ∈ Z[q±1].
For discrete functions f : N→ C[q±1] define operators M and L acting on f by

(6.5) M(f)(n) = q2nf(n) and L(f)(n) = f(n+ 1).

When acting on discrete functions, these operators satisfy the same non-commutativity
relation, LM = q2ML, as the operators (4.2) acting on holomorphic functions. It was
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shown [7] that the colored Jones function of every knotK ⊂ S3 is annihilated by an op-
erator α̃K(q,M,L). The AJ-conjecture asserts that α̃K(−1,M,L) = R(M)AK(M,L)
where R(M) is some rational function of M , and AK(M,L) is the A-polynomial of
K. In the case of torus knots, the AJ-conjecture has been verified [11].

For T (2, b) torus knots, the colored Jones polynomial is annihilated by the operator
α̃(q,M,L) = c2L

2 + c1L+ c0 where

c2 = q2M2 − q−2M−2

c1 = q−2b
(
q−4bM−2b(q2M2 − q−2M−2)− (q6M2 − q−6M−2)

)
c0 = −q−4bM−2b(q6M2 − q−6M−2).

This annihilator can be factored as

(6.6) α̃(q,M,L) =
(
(q2M2 − q−2M−2)L− (q6M2 − q−6M−6)q−2b

) (
L+ q−2bM−2b

)
Recall the annihilator Â(q,M,L) = 1 + q2bM2bL from Theorem 5.1. It can be seen
that these annihilators satisfy

α̃(q,M,L) =
(
(q2M2 − q−2M−2)L− (q6M2 − q−6M−6)q−2b

)
q2bM2bÂ(q,M,L)

and

α̃(−1,M,L) = (M2 −M−2)(L− 1)(L+M−2b) = (M2 −M−2)(L− 1)Â(−1,M,L).

In the case of T (a, b) torus knots, the colored Jones polynomial is annihilated by
the operator c3L

3 + c2L
2 + c1L+ c0 where

c3 = q2(q2(a+b)Ma+b + q−2(a+b)M−(a+b))− q−2(q2(a−b)Ma−b + q−2(a−b)M−(a−b))

c2 = −q−2ab
(
q2(q4(a+b)Ma+b + q−4(a+b)M−(a+b)) + q−2(q4(a−b)Ma−b + q−4(a−b)M−(a−b))

c1 = −q−8abM−2abc3

c0 = −q−4abM−2abc2.
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