QUANTUM A-CURVES OF TORUS KNOTS

NATHAN DRUIVENGA

Abstract.

1. Introduction

2. The Chern-Simons Line Bundle

The goal of this section is to defined a bundle over the character variety of the torus boundary of a 3-manifold.
2.1. The Representation and Character Varieties. Let $G=\left\langle a_{i} \mid r_{j}\right\rangle$ be a finitely generated group with n generators and m relations. A representation $\rho: G \rightarrow S L_{2}(\mathbb{C})$ is a homomorphism determined by a choice of matrices $A_{i} \in S L_{2}(\mathbb{C})$ such that the image of each relation evaluates to the identity in $S L_{2}(\mathbb{C})$. Denote by $\operatorname{Rep}(G) \subset$ $\prod_{i=1}^{n} S L_{2}(\mathbb{C})$ the space of all representations of G under the relations r_{j} and embed $\operatorname{Rep}(G)$ into $\mathbb{C}^{4 n}$ by $\rho \mapsto\left(\rho\left(a_{1}\right), \rho\left(a_{2}\right), \ldots, \rho\left(a_{n}\right)\right)$. Under this embedding, $\operatorname{Rep}(G)$ is an algebraic variety called the representation variety. Specifically, $\operatorname{Rep}(G)$ is cut out by $4 m+n$ equations where $4 m$ equations come from the m relations and n equations from the fact that $\operatorname{det}\left(\rho\left(a_{i}\right)\right)=1$ for each $1 \leq i \leq n$.

There is an action of $S L_{2}(\mathbb{C})$ on $\operatorname{Rep}(G)$ by conjugation. The quotient of $\operatorname{Rep}(G)$ by this action does not yield a Hausdorff space. To resolve this problem, identify representations of G that have the same character. A character of a representation $\rho \in \operatorname{Rep}(G)$ is a homomorphism $\chi_{\rho}: G \rightarrow \mathbb{C}$ defined by $\chi_{\rho}(g)=\operatorname{tr}(\rho(g))$, for each $g \in G$, where $\operatorname{tr}(\rho(g))$ is the trace of the matrix $\rho(g)$. The character variety of G, denoted $\chi(G)$, is the space of all characters of elements of $\operatorname{Rep}(G)$. The variety $\chi(G)$ can be thought of as the categorical quotient $\operatorname{Rep}(G) / S L_{2}(\mathbb{C})$ where elements of $\operatorname{Rep}(G)$ with the same character have been identified. The fact that $\chi(G)$ is an algebraic variety does not follow as easily as with $\operatorname{Rep}(G)$, but with some effort it can be shown [10].
2.2. The Bundle. [9] Let M be a 3 -manifold with torus boundary T. Let $\{\mu, \lambda\}$ be the standard basis for $\pi_{1}(T)$ and denote by $\chi(T)$ (respectively $\chi(M)$) the character variety $\chi\left(\pi_{1}(T)\right)$ (respectively $\chi\left(\pi_{1}(M)\right)$). Define a map $v: \operatorname{Hom}\left(\pi_{1}(T), \mathbb{C}\right) \rightarrow \chi(T)$ by $v(f)=\left(\alpha \mapsto e^{2 \pi i f(\alpha)}\right)$. This is a 2:1 branch covering map with covering group $G \cong \mathbb{Z} \oplus \mathbb{Z} \rtimes \mathbb{Z}_{2}$ which has presentation,

$$
G=\left\langle x, y, b \mid x y-y x=b x b x=b y b y=b^{2}=1\right\rangle
$$

Send each $f \in \operatorname{Hom}\left(\pi_{1}(T), \mathbb{C}\right)$ to the pair $(f(\mu), f(\lambda)) \in \mathbb{C} \times \mathbb{C}$. With this identification, the action of G on $\operatorname{Hom}\left(\pi_{1}(T), \mathbb{C}\right)$ is

$$
x(z, w)=(z+1, w), \quad y(z, w)=(z, w+1), \quad b(z, w)=(-z,-w)
$$

Extend the this action to the trivial bundle $\operatorname{Hom}\left(\pi_{1}(T), \mathbb{C}\right) \times \mathbb{C}^{*}$, where \mathbb{C}^{*} are the nonzero complex numbers, by
$x(z, w, \zeta)=\left(z+1, w, \zeta e^{2 \pi i w}\right), y(z, w, \zeta)=\left(z, w+1, \zeta e^{-2 \pi i z}\right), b(z, w, \zeta)=(-z,-w, \zeta)$.
Define the Chern-Simons line bundle over the character variety $\chi(T)$ as the quotient bundle

$$
C S(T)=\operatorname{Hom}\left(\pi_{1}(T), \mathbb{C}\right) \times \mathbb{C}^{*} / G
$$

As explained in [9], although the action has been defined by a fixed basis of $\pi_{1}(T)$, the action only depends on the orientation of T. Therefore, for the remainder of the paper, elements of $C S(T)$ are written $[z, w, \zeta]$ with the assumption of a fixed standard basis $\{\mu, \lambda\}$.

The Chern-Simons section is a map $C S_{M}: \chi(M) \rightarrow C S(T)$.

$$
\begin{equation*}
C S_{M}: \rho \mapsto\left[z, w, e^{2 \pi i c s(\rho)}\right] \tag{2.1}
\end{equation*}
$$

where $\operatorname{cs}(\rho)$ is the Chern-Simons invariant associated to the representation ρ.
The following theorem shows how to calculate the change in the Chern-Simons invariant along a path of representations.

Theorem 2.1 (P. Kirk, E. Klassen [9]). Let M denote an oriented 3-dimensional manifold whose boundary $\partial M=T$ consists of a 2 -dimensional torus. Let $\{\mu, \lambda\}$ denote an oriented basis for $\pi_{1}(T)$. Let $\rho(t): \pi_{1}(M) \rightarrow S L_{2}((C)), t \in[0,1]$, be a path of representations where $(z(t), w(t))$ denote a lift of $\rho(t)_{\mid \pi_{1}(T)}$ to \mathbb{C}^{2}. Suppose

$$
C S_{M}(\rho(t))=[z(t), w(t), c s(z(t))]
$$

for all t. Then,

$$
c s(z(1)) \cdot c s(z(0))^{-1}=e^{2 \pi i \int_{0}^{1} z(t) w^{\prime}(t)-z^{\prime}(t) w(t) d t}
$$

and if $z(0)$ corresponds to the trivial representation, $\operatorname{cs}(z(0))=1$.
Assuming a path of representations is followed, the formula from Theorem 2.1 can be rewritten as

$$
\begin{equation*}
c s(z)=c s\left(z_{0}\right) \cdot e^{2 \pi i \int_{z_{o}}^{z} z d w-w d z} \tag{2.2}
\end{equation*}
$$

which gives a local expression of the Chern-Simons section as a function of z in a neighborhood of z_{0}.

3. The A-Polynomial

The A-polynomial is the defining polynomial of an algebraic curve in $\mathbb{C}^{*} \times \mathbb{C}^{*}$ where \mathbb{C}^{*} are the nonzero complex numbers [1]. Let $K \subset S^{3}$ be a knot and M be the complement of a regular neighborhood of K. Then M is a compact manifold with boundary homeomorphic to a torus, $\partial M=T$.

The fundamental group $\pi_{1}(T)$ is a free abelian group with two generators. Let $\{\mu, \lambda\}$ be the standard basis for $\pi_{1}(T)$. Consider the subset $\operatorname{Rep}^{\Delta}\left(\pi_{1}(M)\right)$ of $\operatorname{Rep}\left(\pi_{1}(M)\right)$ consisting of upper triangular $S L_{2}(\mathbb{C})$ representations. Set

$$
\rho(\mu)=\left(\begin{array}{cc}
m & \star \\
0 & m^{-1}
\end{array}\right) \quad \text { and } \quad \rho(\lambda)=\left(\begin{array}{cc}
l & \star \\
0 & l^{-1}
\end{array}\right)
$$

and let $\epsilon: \operatorname{Rep}^{\Delta}\left(\pi_{1}(M)\right) \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}$ be the eigenvalue map defined by $\epsilon(\rho)=(m, l)$. Let Z be the Zariski closure of $\epsilon\left(\operatorname{Rep}^{\Delta}\left(\pi_{1}(M)\right)\right)$ in $\mathbb{C}^{*} \times \mathbb{C}^{*}$. Each of the components of Z are one dimensional [5]. The components are hyper-surfaces and can be cut out by a single polynomial unique up to multiplication by a constant. The A-polynomial, $A_{K}(m, l)$, is the product of all such defining polynomials. The A-polynomial can be taken to have relatively prime integer coefficients and is well defined up to a unit. The abelian component of Z will have defining polynomial $l-1$ and thus the A-polynomial can be factored as $A_{K}(m, l)=(l-1) A_{K}^{\prime}(m, l)$ [1].
3.1. Torus Knots. Denote by $T(a, b)$ the (a, b)-torus knot. The A-polynomials of torus knots are [1]

$$
A_{T(p, q)}(m, l)= \begin{cases}(l-1)\left(l m^{2 b}+1\right) & : p=2, b>2 \\ (l-1)\left(l^{2} m^{2 a b}-1\right) & : a, b>2\end{cases}
$$

The A-polynomial gives a parameterization of the representation space. Lift each component of the zero locus of the A-polynomial to a curve in $\mathbb{C} \times \mathbb{C}$ by using logarithmic coordinates. Specifically, let $m=e^{2 \pi i z}$ and $l=-e^{2 \pi i w}$. Using the principal branch of log, the A-curves of the (a, b)-torus knots are cut out by

$$
A_{T(a, b)}(z, w)= \begin{cases}w(w+2 b z) & : a=2, b>2 \tag{3.1}\\ w(w+a b z)\left(w+\frac{1}{2}+a b z\right) & : a, b>2\end{cases}
$$

4. Quantum Curves

4.1. Quantization. In the language of physics, the A-polynomial, $A(z, w)$, cuts out a Lagrangian subvariety of $\mathbb{C} \times \mathbb{C}$ endowed with the symplectic form

$$
\begin{equation*}
2 \pi i h d z \wedge d w \tag{4.1}
\end{equation*}
$$

The A-curve is the phase space of analytically continued Chern-Simons theory [8] with a classical state being a $S L_{2}(\mathbb{C})$ representation up to trace equivalence. The goal is
to promote the A-curve to an operator $\hat{A}(q, M, L)$ that will annihilate $c s(z)$ (more precisely, the section $\left.C S_{M}\right)(2.1)$ for some operators M, L quantizing m, l. This is reminiscent of the $A J$-conjecture [6] where the recurrence relation, $\widetilde{\alpha}_{K}(q, M, L)$ [7], of the colored Jones function is expected to semi-classically limit to the A-polynomial. In that setting, the operators M and L are elements of a ring called the quantum torus and satisfy the relation $L M=q^{2} M L$. In the case at hand, it will be shown that the following operators acting on holomorphic functions lead to the same noncommutativity relation.

$$
\begin{equation*}
M=e^{2 \pi i z} \quad \text { and } \quad L=e^{h \frac{d}{d z}+2 \pi i w} \quad\left(q=e^{\frac{\pi i}{h}}\right) \tag{4.2}
\end{equation*}
$$

Notice that as $h \rightarrow 0, M \rightarrow e^{2 \pi i z}=m$ and $L \rightarrow e^{2 \pi i w}=-l$. In this sense, the operators are a coherent quantization of the classical coordinates. It will be seen that in the case of torus knots, the annihilator of certain power of the Chern-Simons section naturally limits to the A-polynomial.
4.2. The Operator L. The action of $M=e^{2 \pi i z}$ on holomorphic functions of z is by multiplication. The action of $L=e^{h \frac{d}{d z}+2 \pi i w(z)}$ needs more clarification.

Lemma 4.1. The operator $L=e^{h \frac{d}{d z}+2 \pi i w(z)}$ acts on holomorphic functions of z as

$$
L(f(z))=f(z+h) \exp \left(\frac{2 \pi i}{h} \int_{z}^{z+h} w(u) d u\right) .
$$

Proof: If $g(z, t)=e^{t\left(h \frac{d}{d z}+2 \pi i w(z)\right)} f(z)$, then $g(z, t)$ satisfies the partial differential equation

$$
\frac{\partial g}{\partial t}-h \frac{\partial g}{\partial z}=2 \pi i w \cdot g
$$

with boundary condition $g(z, 0)=f(z)$.
Let $z(t)=z-h t$ and $G(t)=g(z(t), t)$. With this substitution, the above PDE can be written as the ODE $G^{\prime}(t)=2 \pi i w(z(t)) \cdot G(t)$ where $G(0)=f(z)$. The solution is

$$
G(t)=f(z) \exp \left(2 \pi i \int_{0}^{t} w(z(s)) d s\right)
$$

Replacing z with $z+$ th and setting $t=1$ yields

$$
g(z, 1)=f(z+h) \exp \left(2 \pi i \int_{0}^{1} w(z+(1-s) h) d s\right) .
$$

Now substitute $u=z+(1-s) h$ to conclude

$$
L(f(z))=g(z, 1)=f(z+h) \exp \left(\frac{2 \pi i}{h} \int_{z}^{z+h} w(u) d u\right) .
$$

Corollary 4.1. The operators M and L acting on holomorphic functions of z satisfy the relation $L M=q^{2} M L$ where $q=e^{\frac{\pi i}{h}}$.

Proof: Let $f(z)$ be a holomorphic function over \mathbb{C}. By Lemma 4.1 and the definition of M,

$$
\begin{aligned}
L M(f(z))=L\left(e^{2 \pi i z} f(z)\right)= & e^{2 \pi i(z+h)} f(z+h) \exp \left(\frac{2 \pi i}{h} \int_{z}^{z+h} w(u) d u\right) \\
& =q^{2} M L(f(z))
\end{aligned}
$$

5. The \hat{A} Curve of torus knots

Let $A \subset \mathbb{C} \times \mathbb{C}$ be the zero locus of the A-polynomial in logarithmic coordinates $(z, w) \in \mathbb{C} \times \mathbb{C}$. There is a projection map $\pi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ onto the first factor given by $\pi(z, w)=z$. There are two kinds of "singular points" on A, those where A is genuinely singular as an algebraic curve and those where the projection map restricted to A is not a local submersion. Away from the finite set of singular points there is a unique tangent vector $\frac{\widetilde{d}}{d z}$ such that $\pi_{*}\left(\frac{\widetilde{d}}{d z}\right)=\frac{d}{d z}$. Define an operator L acting on local holomorphic sections of the Chern-Simons line bundle over A by

$$
\begin{equation*}
L=e^{\widehat{\widehat{d}} d z+2 \pi i w(z)} \tag{5.1}
\end{equation*}
$$

where $w(z)$ is a local parameterization of the A-curve. This operator acts locally on holomorphic sections of the Chern-Simons bundle in the same way that L from Lemma 4.1 acts on holomorphic functions of z.
5.1. $\mathbf{T}(\mathbf{2}, \mathbf{b})$ knots. The A-polynomial of the $(2, b)$-torus knot (3.1) has two factors. The factor w corresponds to the abelian component of the character variety while $w+2 b z$ defines the geometric component denoted for now by A_{g}. On the geometric component, there is a local expression $w(z)=-2 b z$ which defines a plane curve with no singular points. Fix a point $z_{0} \in A_{g}$. From Theorem 2.1 there is a local expression for the Chern-Simons section given by

$$
c s(z)=c s\left(z_{0}\right) \cdot e^{2 \pi i \int_{z_{o}}^{z} z d w-w d z}
$$

where the integral is assumed to be over a path from z_{0} to z contained in A_{g}. Let $h=\frac{1}{N}$ with $N \in \mathbb{N}$ and consider $c s^{\frac{1}{h}}(z)$ as a section of the N-fold tensor power of the bundle $C S(T)$ defined in 2.2 . The natural number N represents the level of quantization.
Lemma 5.1. The operator $L=e^{h \frac{d}{d z}+2 \pi i w(z)}$ acts on $\operatorname{cs}^{\frac{1}{h}}(z)$ as

$$
L\left(c s^{\frac{1}{h}}(z)\right)=c s^{\frac{1}{h}}(z) \exp \left(\frac{2 \pi i}{h} \int_{z}^{z+h} z d w\right)
$$

Proof: The lemma follows from a direct application of Lemma 4.1.

Theorem 5.1. On the component of the A-curve parameterized by $w(z)=-2 b z(3.1)$, the section cs ${ }^{\frac{1}{n}}(z)$ of the $N^{\text {th }}$ tensor power bundle $C S^{N}(T)$, where T is the boundary of the $T(2, b)$ knot complement in S^{3}, is annihilated by the operator

$$
\begin{equation*}
\hat{A}=1-q^{2 b} M^{2 b} L \tag{5.2}
\end{equation*}
$$

Proof: Recall that $h=\frac{1}{N}$ and $q=e^{\pi i h}$. The parameterization $w(z)=-2 b z$ gives $z d w=-2 b z d z$. By Lemma 5.1,

$$
\begin{aligned}
L\left(c s^{\frac{1}{h}}(z)\right) & =c s^{\frac{1}{h}}(z) \exp \left(\frac{2 \pi i}{h} \int_{z}^{z+h} z d w\right) \\
& =c s^{\frac{1}{h}}(z) \exp \left(-\frac{2 \pi i b}{h}\left(2 z h+h^{2}\right)\right) \\
& =c s^{\frac{1}{h}}(z)\left(e^{2 \pi i z}\right)^{-2 b}\left(e^{\pi i h}\right)^{-2 b} \\
& =q^{-2 b} M^{-2 b}\left(c s^{\frac{1}{h}}(z)\right)
\end{aligned}
$$

Therefore, $\left(q^{-2 b} M^{-2 b}-L\right) c s^{\frac{1}{h}}(z)=0$. Multiplying on the left by $q^{2 b} M^{2 b}$ gives the desired result.

Corollary 5.1. $\left.\hat{A}\right|_{q=-1}=\frac{A_{T(2, b)}(m, l)}{l-1}$
Proof: When $q=-1, L=-l$. Therefore, $\left.\hat{A}\right|_{q=-1}=l m^{2 b}+1$.
5.2. $\mathbf{T}(\mathbf{a}, \mathbf{b})$ knots. The A-curve of $T(a, b)$ torus knots has two geometric components. Denote by $\left(A_{1}, w_{1}\right)$ the component corresponding to the factor $w+\frac{1}{2}+a b z$ and $\left(A_{2}, w_{2}\right)$ the component corresponding to $w+a b z$ from (3.1). The operator L (5.1) changes depending on the parameterization. Let L_{i} be the operator defined by the parameterization $w_{i}(z)$, for $i=1,2$. With this notation, the operators satisfy $L_{1}=-L_{2}$. Denote by $c s_{i}(z)$ the Chern-Simons section over the component $\left(A_{i}, w_{i}\right)$.

Theorem 5.2. Over the $\left(A_{i}, w_{i}\right)$-component of the A-curve parameterized by $w_{i}(z)$ the section $c s_{i}^{\frac{1}{h}}(z)$ of the $N^{t h}$ tensor power bundle $C S^{N}(T)$, where T is the boundary of the $T(a, b)$ knot complement in S^{3}, is annihilated by the operator

$$
\begin{equation*}
\hat{A}_{i}=1-q^{a b} M^{a b} L_{i} \tag{5.3}
\end{equation*}
$$

Proof: The proof that $c s_{i}^{\frac{1}{h}}(z)$ is annihilated by \hat{A}_{i} on either component is almost identical to that of Theorem 5.1 since $z d w_{i}=-a b z$.

Corollary 5.2. The operator $\hat{A}_{1} \hat{A}_{2}=\left(1-q^{a b} M^{a b} L_{1}\right)\left(1-q^{a b} M^{a b} L_{2}\right)$ annihilates the section $\operatorname{cs}^{\frac{1}{n}}(z)$ defined over both geometric components of the A curve.

Proof: It must be shown that $\hat{A}_{1} \hat{A}_{2}$ annihilates both $c s_{1}^{\frac{1}{h}}(z)$ and $c s_{2}^{\frac{1}{h}}(z)$. By Theorem 5.2,

$$
\begin{gathered}
\left(1-q^{a b} M^{a b} L_{1}\right)\left(1-q^{a b} M^{a b} L_{2}\right) c s_{1}^{\frac{1}{h}}(z)=\left(1-q^{a b} M^{a b} L_{1}\right) 2 c s_{1}^{\frac{1}{h}}(z)=0 \\
\left(1-q^{a b} M^{a b} L_{1}\right)\left(1-q^{a b} M^{a b} L_{2}\right) c s_{2}^{\frac{1}{h}}(z)=0
\end{gathered}
$$

Corollary 5.3. $\left.\left(\hat{A}_{1} \circ \hat{A}_{2}\right)\right|_{q=-1}=\frac{A_{T(a, b)}(m, l)}{l-1}$
Proof: $\hat{A_{1}} \circ \hat{A_{2}}=\left(1-q^{a b} M^{a b} L_{1}\right)\left(1-q^{a b} M^{a b} L_{2}\right)=\left(1-q^{a b} M^{a b} L_{1}\right)\left(1+q^{a b} M^{a b} L_{1}\right)$ If $q=-1$, then without loss of generality, $L_{1}=-l$. After this replacement, the A-polynomial of $T(a, b)$ (without the $(l-1)$ factor) is recovered.

Remark: The factor $(l-1)$ of the A-polynomial corresponds to $w=0$. In this case, $c s(z)=1$ and $L(f(z))=f(z+h)$. Therefore, the operator $L-1$ annihilates $c s^{\frac{1}{h}}(z)$.

6. Conclusions and Discussion

As mentioned in the introduction, the motivation for finding an annihilator of the Chern-Simons section (2.1) stems from a relationship between the Witten path integral [12] and the Jones polynomial.
6.1. Chern-Simons Theory. Let M be a compact oriented 3 -manifold with a single torus boundary and consider the principal $\mathrm{SL}_{2}(\mathbb{C})$-bundle, P, over M. Let A be an $s l_{2}(\mathbb{C})$-valued one form on M and define the Chern-Simons action on A by

$$
c s(A)=\frac{t}{8 \pi} \int_{M} \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)+\frac{\tilde{t}}{8 \pi} \int_{M} \operatorname{Tr}\left(\bar{A} \wedge d \bar{A}+\frac{2}{3} \bar{A} \wedge \bar{A} \wedge \bar{A}\right)
$$

where Tr denotes the trace and $t=N+i s, \bar{t}=N-i s$ are coupling constants. The integer N is called the level and $s \in \mathbb{R}$ (or $i \mathbb{R}$) is introduced to ensure the action behaves consistently under a change of orientation on M [8]. Using this action, define the following partition function by means of the Feynman path integral.

$$
\begin{equation*}
Z(M)=\int_{\mathcal{A}} e^{i c s(A)} \mathcal{D} A \tag{6.1}
\end{equation*}
$$

The partition function is not rigorously defined since the measure, $\mathcal{D} A$, is postulated on the (infinite dimensional) space, \mathcal{A}, of connections on M. Proceeding heuristically, it was shown that in the case of compact gauge group, (6.1) satisfies the same skein relation as the colored Jones polynomial [12].

To make a more concrete connection between the partition function and the current paper, it is prudent to discuss quantum perturbation theory. The analytically
continued partition function can be written as a finite sum over contributions from different critical points,

$$
\begin{equation*}
Z(M, h, \widetilde{h})=\sum_{\alpha, \widetilde{\alpha}} n_{\alpha, \widetilde{\alpha}} Z^{\alpha}(M, h) \bar{Z}^{\widetilde{\alpha}}(M, \widetilde{h}) \tag{6.2}
\end{equation*}
$$

where $h=\frac{1}{t}$ and $\widetilde{h}=\frac{1}{\tilde{t}}, n_{\alpha, \widetilde{\alpha}} \in \mathbb{Z}$, and $\alpha, \widetilde{\alpha}$ label the local branch and conjugate branch of the A-curve. In the limit, $h \rightarrow 0$, the holomorphic blocks, $Z_{\alpha}(M, h)$, have asymptotic expansion given by [3],

$$
\begin{equation*}
Z^{\alpha}(M, h) \sim \exp \left(\frac{1}{h} S_{0}^{\alpha}-\frac{1}{2} \delta^{\alpha} \log h+\sum_{n=1}^{\infty} S_{n}^{\alpha} h^{n-1}\right) \tag{6.3}
\end{equation*}
$$

The leading order term, $S_{0}^{\alpha}(z)=2 \int_{A(m, l)=0}^{z} w(z) d z$ is the value of the classical ChernSimons section on the $\alpha^{\text {th }}$ branch of the A-curve. It is related to 2.2 by an application of integration by parts. Given a classical state, (i.e. a flat connection A) there is an associated flat bundle, E_{A}, over M. The term δ^{α} is the following difference in the dimension of the cohomology groups of the bundle [3] and is therefore locally constant.

$$
\delta^{\alpha}=\operatorname{dim}\left(H^{1}\left(M, E_{A}\right)-\operatorname{dim}\left(H^{0}\left(M, E_{A}\right)\right)\right.
$$

The term $S_{1}^{\alpha}(z)=\frac{1}{2} \log (T(z))$ is the twisted Reidemeister torsion with coefficients in the adjoint representation [4].

The goal is to extend the defining polynomial of the A-curve to an operator, $\hat{A}(q, M, L)=\sum_{i=0}^{\infty} a_{i}(q, M) L^{i}$, that annihilates the partition function 6.2). The equation

$$
\begin{equation*}
\hat{A} Z=0 \tag{6.4}
\end{equation*}
$$

leads to an infinite hierarchy of difference equations that can be solved recursively given the initial condition $S_{0}^{\alpha}(z)$ [3]. In the case of torus knots, the Reidemeister torsion is locally constant along the geometric component of the A-curve. Therefore, all the higher order terms in the asymptotic expansion (6.3) are left constant under the action of L. Thus the local partition function and the local operator \hat{A} are completely determined by the Chern-Simons section.
6.2. Matching Results. One of the main goals of this paper is to set up the framework to prove the $A J$-conjecture [6] which is a proposed relationship between the A polynomial and colored Jones polynomial of a knot $K \subset S^{3}$. The colored Jones polynomial is a function that assigns to each $n \in \mathbb{N}$ a Laurent polynomial $J_{K}(n) \in \mathbb{Z}\left[q^{ \pm 1}\right]$. For discrete functions $f: \mathbb{N} \rightarrow \mathbb{C}\left[q^{ \pm 1}\right]$ define operators M and L acting on f by

$$
\begin{equation*}
M(f)(n)=q^{2 n} f(n) \quad \text { and } \quad L(f)(n)=f(n+1) \tag{6.5}
\end{equation*}
$$

When acting on discrete functions, these operators satisfy the same non-commutativity relation, $L M=q^{2} M L$, as the operators (4.2) acting on holomorphic functions. It was
shown [7] that the colored Jones function of every knot $K \subset S^{3}$ is annihilated by an operator $\widetilde{\alpha}_{K}(q, M, L)$. The $A J$-conjecture asserts that $\widetilde{\alpha}_{K}(-1, M, L)=R(M) A_{K}(M, L)$ where $R(M)$ is some rational function of M, and $A_{K}(M, L)$ is the A-polynomial of K. In the case of torus knots, the $A J$-conjecture has been verified [11].

For $T(2, b)$ torus knots, the colored Jones polynomial is annihilated by the operator $\widetilde{\alpha}(q, M, L)=c_{2} L^{2}+c_{1} L+c_{0}$ where
$c_{2}=q^{2} M^{2}-q^{-2} M^{-2}$
$c_{1}=q^{-2 b}\left(q^{-4 b} M^{-2 b}\left(q^{2} M^{2}-q^{-2} M^{-2}\right)-\left(q^{6} M^{2}-q^{-6} M^{-2}\right)\right)$
$c_{0}=-q^{-4 b} M^{-2 b}\left(q^{6} M^{2}-q^{-6} M^{-2}\right)$.

This annihilator can be factored as

$$
\begin{equation*}
\widetilde{\alpha}(q, M, L)=\left(\left(q^{2} M^{2}-q^{-2} M^{-2}\right) L-\left(q^{6} M^{2}-q^{-6} M^{-6}\right) q^{-2 b}\right)\left(L+q^{-2 b} M^{-2 b}\right) \tag{6.6}
\end{equation*}
$$

Recall the annihilator $\hat{A}(q, M, L)=1+q^{2 b} M^{2 b} L$ from Theorem 5.1. It can be seen that these annihilators satisfy

$$
\widetilde{\alpha}(q, M, L)=\left(\left(q^{2} M^{2}-q^{-2} M^{-2}\right) L-\left(q^{6} M^{2}-q^{-6} M^{-6}\right) q^{-2 b}\right) q^{2 b} M^{2 b} \hat{A}(q, M, L)
$$

and

$$
\widetilde{\alpha}(-1, M, L)=\left(M^{2}-M^{-2}\right)(L-1)\left(L+M^{-2 b}\right)=\left(M^{2}-M^{-2}\right)(L-1) \hat{A}(-1, M, L) .
$$

In the case of $T(a, b)$ torus knots, the colored Jones polynomial is annihilated by the operator $c_{3} L^{3}+c_{2} L^{2}+c_{1} L+c_{0}$ where

$$
\begin{aligned}
& c_{3}=q^{2}\left(q^{2(a+b)} M^{a+b}+q^{-2(a+b)} M^{-(a+b)}\right)-q^{-2}\left(q^{2(a-b)} M^{a-b}+q^{-2(a-b)} M^{-(a-b)}\right) \\
& c_{2}=-q^{-2 a b}\left(q^{2}\left(q^{4(a+b)} M^{a+b}+q^{-4(a+b)} M^{-(a+b)}\right)+q^{-2}\left(q^{4(a-b)} M^{a-b}+q^{-4(a-b)} M^{-(a-b)}\right)\right. \\
& c_{1}=-q^{-8 a b} M^{-2 a b} c_{3} \\
& c_{0}=-q^{-4 a b} M^{-2 a b} c_{2} .
\end{aligned}
$$

References

[1] D. Cooper, M. Culler, H. Gillet, D. Long and P. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994), pp. 47-84.
[2] T. Dimofte Quantum Riemann surfaces in Chern-Simons theory.
[3] T. Dimofte, S. Gukov, J. Lenells, and D. Zagier, Exact results for perturbative Chern-Simons theory with complex gauge group.
[4] J. Dubois and R. Kashaev, On the asymptotic expansion of the colored Jones polynomial for torus knots.
[5] N. Dunfield and S. Garoufalidis, Non-triviality of the A-Polynomial for Knots in S^{3}, Algebr. Geom. Topol. 4 (2004), 1145-1153.
[6] S. Garoufalides, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, 291-309 (electronic).
[7] S. Garoufalidis and T. Le, The colored Jones function is q-holonomic, Geom. Topol. 9 (2005), 1253-1293 (electronic).
[8] S. Gukov, Three dimensional quantum gravity, Chern-Simons theory, and the A-polynomial,
[9] P. Kirk and E. Klassen, Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of T^{2}, Commun. Math. Phys. 153, 557-581(1393).
[10] A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS 336 (1985).
[11] A. Tran, Proof of a stronger version of the AJ conjecture of torus knots, Algebra. Geom. Topol. 13 (2013), no. 1, 609-624.
[12] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 129 (1989) 351-399.

Mathematics Department, University of Iowa, Iowa City, IA
E-mail address: nathan-druivenga@uiowa.edu

