Inverse Trig Functions 00000000 Derivatives

0000000

Inverse Trig Functions

Peter Perry

October 7, 2024

Inverse Trig Functions 00000000

Derivatives

0000000

< □ ▶ < @ ▶ < 돌 ▶ < 돌 ▶ Ξ · ዏ < ? _2/22

Inverse Trig Functions 000000000 Derivatives

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < で 3/22</p>

0000000

Election Info

Today, October 7, is the last day you may register to vote in the November 5, 2024 election. You must be registered by 4 PM today if you wish to vote in the election.

For more information please see here (this is a Commonwealth of Kentucky government website)

Derivatives

0000000

Unit II

- September 25 Derivatives of Exponential Functions (§2.7)
- September 27 Derivatives of Trig Functions (§2.8)
- September 30 The Chain Rule (§2.9)
- October 2 The Natural Logarithm (§2.10)
- October 4 Implicit Differentiation (§2.11)
- October 7 Inverse Trig Functions (§2.12)
- October 9 The Mean Value Theorem (§2.13)
- October 11 Higher-Order Derivatives (§2.14)
- October 14 Velocity and Acceleration (§3.1)
- October 16 Linear and Quadratic Approximation (§3.4.1–3.4.3)
- October 18 Exam II Review
- October 21 Exam II Review
- October 22 Exam II, 5:00-7:00 PM

<□ > < @ > < E > < E > E の Q @ 5/22

0000000

Reminders for the Week of October 7–11

- Webwork 2.10 is due on Monday, October 7 (tonight!)
- Quiz 5 on 2.7–2.9 is due on Thursday, October 10
- Webworks 2.11 and 2.12 are due on Friday, October 11
- There is no written assignment for the week of October 7–11

Inverse Trig Functions 000000000 Derivatives

<□ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q @ 6/22

0000000

Goals of the Day

Today we'll cover the following topics:

- Definitions of inverse trig functions arcsin, arccos, arctan, arcsec including domains and ranges
- Derivatives of arcsin, arccos, arctan, and arcsec
- Practice

Inverse Trig Functions •00000000

Derivatives

0000000

The arcsin function

To make the sine function one-to-one we restrict its domain:

Function:sin(x)Domain: $[-\pi/2, \pi/2]$ Range:[-1, 1]

Its inverse function is the arcsin function:

Function: $\arcsin(x)$ Domain:[-1,1]Range: $[-\pi/2,\pi/2]$

The function $\arcsin(x)$ is sometimes denoted $\sin^{-1}(x)$

・ロト <
同 ト <
言 ト <
言 ト 、
言 の へ の 7/22
</p>

Inverse Trig Functions

Derivatives

0000000

The arcsin function: How it Works

From this table...

x	$\sin x$
$-\pi/2$	-1
$-\pi/3$	$-\sqrt{3}/2$
$-\pi/4$	$-\sqrt{2}/2$
$-\pi/6$	-1/2
0	0
$\pi/6$	1/2
$\pi/4$	$\sqrt{2}/2$
$\pi/3$	$\sqrt{3}/2$
$\pi/2$	1

Can you fill in this table?

x	$\arcsin(x)$
-1	$-\pi/2$
$-\sqrt{3}/2$	$-\pi/3$
$-\sqrt{2}/2$	$-\pi/4$
-1/2	$-\pi/6$
0	0
1/2	$\pi/6$
$\sqrt{2}/2$	$\pi/4$
$\sqrt{3}/2$	$\pi/3$
1	1

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の < で 8/22

Inverse Trig Functions

Derivatives

0000000

IClicker Interlude

Recall that $\arcsin(\text{also known as } \sin^{-1})$ is the inverse function for $\sin(x)$ on the domain $[-\pi/2, \pi/2]$.

So: $\arcsin(x)$ has domain [-1, 1] and range $[-\pi/2, \pi/2]$

Which of the following statements are correct?

(A)
$$\sin(\arcsin(1/2)) = 1/2$$

- (R) $\arcsin(1/2) = \pi/6$
- (C) $\arcsin(\sin(8\pi)) = 8\pi$
- (S) sin(arcsin(4)) = 4
- (I) sin(arcsin(-1/2)) = -1/2
- (N) $\sin(\arcsin(\sqrt{2}/2)) = -\sqrt{2}/2$

Answer: **ARI**. In (C), 8π is not in the range of arcsin, in (S), 4 is not in the domain of arcsin, and in (N), the right-hand side should be $\sqrt{2}/2$, not $-\sqrt{2}/2$.

Inverse Trig Functions

Derivatives

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

0000000

Practice with arcsin

Remember: $\arcsin(x)$ has domain [-1, 1] and range $[-\pi/2, \pi/2]$ Find: $\arcsin(-\sqrt{3}/2) = -\pi/3$

 $\cos(\arcsin(t)) = \sqrt{1 - t^2}$

Use the triangle:

 $\arcsin(\sin(5\pi/4)) = -\pi/4$

Inverse Trig Functions

Derivatives

0000000

The arccos story

The cosine function is 1 : 1 on $[0, \pi]$ and has range [-1, 1]

We define its inverse function $\arccos(x)$ with domain [-1, 1] and range $[0, \pi]$

Inverse Trig Functions

Derivatives

0000000

The arctan story

The tangent function is 1 : 1 on $(-\pi/2, \pi/2)$ and has range $(-\infty, \infty)$

We define its inverse function $\arctan(x)$ with domain $(-\infty, \infty)$ and $\operatorname{range}(-\pi/2, \pi/2)$

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Inverse Trig Functions

Derivatives

0000000

The arcsec story

The function $\sec(x) = 1/\cos(x)$ is 1:1 on $[0, \pi/2) \cup (\pi/2, \pi]$ We restrict $\sec(x)$ so that: Domain: $[0, \pi/2) \cup (\pi/2, \pi]$ Range: $(-\infty, -1] \cup [1, \infty)$

(what happens when $x = \pi/2$?)

We define $\operatorname{arcsec}(x)$ to be the inverse function for $\operatorname{sec}(x)$ with:

Domain: $(-\infty, -1] \cup [1, \infty)$ Range: $[0, \pi/2) \cup (\pi/2, \pi]$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Inverse Trig Functions

Derivatives

0000000

Т	h	ρ	S	t	n	r	7	Δ	r	С
1		C	$\boldsymbol{\mathcal{O}}$	U		۰.	y	1	11	C

	Domain	Range		Domain	Range
sin(x)	$[-\pi/2, \pi/2]$	[-1,1]	$\arcsin(x)$	[-1,1]	$[-\pi/2, \pi/2]$
$\cos(x)$	[0, π]	[-1,1]	$\arccos(x)$	[-1,1]	$[0,\pi]$
tan(x)	$(-\pi/2,\pi/2)$	$(-\infty,\infty)$	$\arctan(x)$	$(-\infty,\infty)$	$(\pi/2, \pi/2)$
$\sec(x)$	$[0, \pi/2)$	(−∞,−1]	$\operatorname{arcsec}(x)$	(−∞,−1]	$[0, \pi/2)$
	\cup (π /2, π]	$\cup [1,\infty)$		$\cup [1,\infty)$	$\cup (\pi/2,\pi]$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q ↔ 14/22

Inverse Trig Functions

Derivatives

▲□▶▲□▶▲≧▶▲≧▶ ≧ の�? 15/22

0000000

Triangles Revisited

Find the angle θ in the triangle at right using:

- (1) The arctangent function
- $\theta = \arctan(2)$
- (2) The arcsecant function
- $\theta = \operatorname{arcsec}(h)$

Inverse Trig Functions 00000000 Derivatives

•000000

The derivative of arcsin

We'll use implicit differentiation to solve for the derivative of $\arcsin(x)$: Let $u(t) = \arcsin(t)$. Then sin(u(t)) = tSO $\cos(u(t))u'(t) = 1$ or $u'(t) = \frac{1}{\cos(u(t))}$ Since $\cos(\arcsin(t)) = \sqrt{1 - t^2}$ we get $\frac{d}{dt}\arcsin(t) = \frac{1}{1-t^2}$

Inverse Trig Functions 00000000 Derivatives

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 17/22

000000

The derivative of arctan

We'll again use implicit differentiation.

Let $u(t) = \arctan(t)$. Then

$$\tan(u(t)) = t$$

 \mathbf{so}

$$\sec^2(u(t))u'(t) = 1$$

or

$$u'(t) = \cos^2(u(t))$$

Inverse Trig Functions 000000000 Derivatives

000000

The derivative of arctan

We'll again use implicit differentiation.

Let $u(t) = \arctan(t)$. Then

 $\tan(u(t)) = t$

 \mathbf{so}

$$\sec^2(u(t))u'(t) = 1$$

or

$$u'(t) = \cos^2(u(t))$$

From the triangle at right, we get

$$\cos(u(t)) = \frac{1}{\sqrt{1+t^2}}$$

so

$$\frac{d}{dt}\arctan(t) = \frac{1}{1+t^2}$$

$$h = \sqrt{1 + t^2}$$

<□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q · 17/22</p>

Inverse Trig Functions 000000000 Derivatives

000000

The derivative of arcsec

Let
$$u = \operatorname{arcsec}(t)$$
. Then

$$t = \sec(u)$$

so

$$1 = \sec(u)\tan(u)\frac{du}{dt}$$

Hence

$$\frac{du}{dt} = \cos(u)\cot(u)$$

From the triangle at right we get

$$\frac{du}{dt} = \frac{1}{|t|} \cdot \frac{1}{\sqrt{t^2 - 1}}$$

Conclusion:

$$\frac{d}{dt}\operatorname{arcsec}(t) = \frac{1}{|t|\sqrt{t^2 - 1}}$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (* 18/22)

Derivatives

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ ○ 19/22

0000000

All the Inverse Trig Function Derivatives You'll Ever Need

Derivatives

0000000

The Incredible Expanding Triangle

(1) Find an expression for θ in terms of *a* and *x*

 $\theta = \arcsin\left(\frac{x}{a}\right)$

(2) Find an expression for the length of the side adjacent to θ

 $l = \sqrt{a^2 - x^2}$

from the Pythagorean Theorem

(3) Find the rate of change of θ with respect to *x* From $\theta = \arcsin(x/a)$ we get

$$\frac{d\theta}{dx} = \frac{1}{\sqrt{1 - x^2/a^2}} \cdot \frac{1}{a} \quad \text{chain rule}$$
$$= \frac{1}{\sqrt{a^2 - x^2}} = \frac{1}{l}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ Q (20/22)

Inverse Trig Functions 000000000 Derivatives

0000000

Practice with Derivatives

Find the derivative of $f(x) = x^2 \arccos x$. Recall that

$$\frac{d}{dx}\arccos(x) = -\frac{1}{\sqrt{1-x^2}}$$

(A)
$$2x \arccos(x) + x^2 \arcsin(x)$$

(R)
$$2x \arccos(x) - \frac{x^2}{\sqrt{1-x^2}}$$

(C) $2x \arccos(x) + \frac{x^2}{\sqrt{1-x^2}}$

Answer: **R**. Use the product rule to get

$$\frac{d}{dx}\left(x^2 \arccos(x)\right) = 2x \arccos(x) + x^2 \frac{d}{dx} \arccos(x)$$
$$= 2x \arccos(x) - \frac{x^2}{\sqrt{1 - x^2}}$$
$$= 2x \arccos(x) - \frac{x^2}{\sqrt{1 - x^2}}$$

Inverse Trig Functions 000000000 Derivatives

(chain rule)

000000

Practice with Derivatives

Find the derivative of

$$f(x) = \sqrt{4 - x^2} + \arcsin(6x)$$

$$f'(x) = \frac{1}{2\sqrt{4-x^2}} \cdot (-2x) + \frac{1}{\sqrt{1-(6x)^2}} \cdot 6$$
$$= -\frac{x}{\sqrt{4-x^2}} + \frac{6}{\sqrt{1-36x^2}}$$

<□ ▶ < □ ▶ < ■ ▶ < ≡ ▶ < ≡ ▶ ■ ● ○ Q (~ 22/22