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The Kadomtsev-Petviashvili Equation
The KP I and KP II equations describe nonlinear waves of long wavelength
propagating in the x-direction with transverse oscillation.

󰀫
(ut + 6uux + uxxx)x = 3λuyy

u(0, x, y) = u0(x, y)
(1)

The KP I equation corresponds to λ = 1 and the KP II equation corresponds
to λ = −1. Both equations are completely integrable.

• The inverse scattering map for KP I involves a nonlocal Riemann-Hilbert
problem

• The inverse scattering map for KP II involves a ∂ problem

Our goal is to obtain large-time asymptotics of solutions for KP I with small
initial data. Our work builds on Xin Zhou’s analysis of inverse scattering for
KP I (Comm. Math. Phys. 1990). We will obtain different spatial asymptotics
in different space-time régimes whose origin may be understood through the
linearized KP I equation.
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Inverse Scattering
The KP I equation is the consistency condition for the system (Dryuma 1974)

iψy + ψxx + uψ = 0

ψt + 4ψxxx + 6uψx + 3
󰀕

ux − i
󰁝 x

−∞
uy dx′

󰀖
ψ = 0

The first equation defines a scattering problem, and the second gives the time
evolution of scattering data.

The direct scattering map takes a function u ∈ S(R2) to scattering data
T±(k, l). If u = u(t, x, y) solves KP I, then the scattering data evolves linearly
in time:

T±(k, l, t) = e4i(l3−k3)tT±(k, l)

The inverse scattering map takes time-evolved scattering data to the solution
u = u(t, x, y) in two steps:

(1) The time-evolved scattering data define a nonlocal Riemann-Hilbert
problem for a function µl(k, x; y, t)

(2) The solution u(t, x, y) is recovered from the scattering data and µl via a
reconstruction formula
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Reconstruction Formula
Given the scattering data T±(k, l) and the scattering solution µl(k, x; y, t), we
recover u(t, x, y) via the small-data reconstruction formula

u(t, x, y) =
1
π

∂

∂x

󰀕󰁝
eitS(k,l;ζ,η) f (k, l)µl(l, x; y, t) dl dk

󰀖
(2)

where

ζ = x/t, η = y/t “slow” variables

f (k, l) = T+(k, l) + T−(k, l), scattering data

S(k, l; ζ, η) = (l − k)ζ − (l2 − k2)η + 4(l3 − k3) oscillatory phase

and µl(k, x; y, t) solves a nonlocal Riemann-Hilbert problem

Remark: The functions T± are “triangular”:

T+(k, l) = 0, l < k T−(k, l) = 0, l > k

which means the amplitude for (2) is not smooth. The map u 󰀁→ T± are
continuous maps into L2(R2) for u of “small norm”
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Long-Time Asymptotics
For u ∈ S(R2), let

󰁨u(l, y) =
1√
2π

󰁝
e−ilxu(x, y) dx

Theorem

Let u0 ∈ S(R2) with 󰀂󰁨u󰀂L1 = c <
√

2π, and 󰀂󰁨u󰀂L2
y L2,−1

l
<

1
4
(1 − c).

Fix δ > 0. Then

u(t, x, y) ≲
t→∞

󰀻
󰁁󰀿

󰁁󰀽

t−1, 12ζ − η2 < −δ,
t−2/3 |12ζ − η2| < δ,
o(t−1), 12ζ − η2 > δ.

We can considerably relax regularity and obtain results for u0 in certain
weighted spaces. Our assumptions imply that T± ∈ L2(R2)
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Regularity Assumptions

Molinet, Saut, and Tzvetkov (2002) proved global well-posedness of KPI for
initial data in the space

Z = {u ∈ L2(R2) : 󰀂u󰀂Z < ∞}

where

󰀂u󰀂Z = 󰀂u󰀂L2(R2) + 󰀂uxxx󰀂L2(R2) +
󰀐󰀐uy

󰀐󰀐
L2(R2) +

󰀐󰀐uxy
󰀐󰀐

L2(R2) (3)

+
󰀐󰀐󰀐∂−1

x uy

󰀐󰀐󰀐
L2(R2)

+
󰀐󰀐󰀐∂−2

x uyy

󰀐󰀐󰀐
L2(R2)

We can prove our results for a space Zw, continuously embedded in Z, which
imposes additional regularity and decay constraints



7/34

KPI and KPII One-Dimensional Model Two-Dimensional Model Nonlinear Problem

Remarks
There is extensive discussion in the PDE literature on large-time asymptotics
of ux, but ours appears to be the first result on pointwise asymptotics of u for
small data and large times. Papers that have influenced our work include:

• Hayashi, Naumkin, Saut: Asymptotics for large time of global solution
to the generalized KP equation, Comm. Math. Phys., 1999

• Hayashi, Naumkin: Large-time asymptotics for the KP equation, Comm.
Math. Phys., 2014

• Harrop-Griffiths, Ifrim, Tataru, The Lifespan of Small solutions to the
KP-I, International Math. Research Notices, 2017

There are several key papers using inverse scattering techniques to find
large-time asymptotics for KP I and KP II. These are

• Manakov, Santini, Takhtajan, Asymptotic behavior of the solutions of
the KP equation (two-dimensional KdV equation), Physics Letters 75A
(6), 1980

• O. M. Kiselev, Asymptotic behavior of a solution for KP II equation,
Proc. Steklov Inst. Math. (Approximation Theory, Asymptotic
Expansions, 2001)
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Previous Inverse Scattering Results - I
Manakov, Santini, and Takhtajan (1980) studied asymptotics of KPI using
stationary phase and asymptotics on the solution to a
Gelfand-Levitan-Marchenko integral equation. In the region 12ζ − η2 < 0,
they claimed

u(t, x, y) ∼
t→∞

4
t

ψζ(ζ, η)Re
󰀓

K(ζ, ζ, η)eitϕ(ζ,η) + c.c.
󰀔

where
ϕ(ξ, η) =

1
108

(η2 − 12ζ)
3
2

and K is derived from the solution to the Gelfand-Levitan-Marchenko
equation

These authors only consider the region η2 − 12ζ > 0 and do not treat the case
of degenerate stationary phase
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Previous Inverse Scattering Results - II
Kiselev determined asymptotics of solutions to the KP II equation for small
data (constraints are imposed on the scattering data) in three different spatial
regions:

u(t, x, y) ∼
t→∞

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

−8t−1 Re
󰀓

e−11itr π

12ir
f (r + iη/12) + c.c.

󰀔

+o(t−1), −(12ξ + η2)t
1
3 ≫ 1

o(t−1), (12ζ + η2)t
1
3 ≫ 1

8it−1√π f (iη/12)F(z) + o(t−1), m |12ξ + 12η2| ≪ 1

where
r =

󰁴
−η2 − 12ζ, z = 8t

2
3

󰀓
η2/12 + ζ

󰀔

See the review paper by Kiselev, Journal of Math. Sciences 138 (6), 2006, §3.3
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A One-Dimensional Model Problem

Consider the initial value problem
󰀫

ut(x, t) = uxxx(x, t) (x, t) ∈ R × R+

u(x, 0) = f (x)

whose solution by Fourier analysis is

u(x, t) =
1√
2π

󰁝
eitϕ(ξ;v) 󰁥f (ξ) dξ, ϕ(ξ; v) = ξv − ξ3

where v = x/t. The phase function ϕ(ξ; v) has

• Nondegenerate critical points at ξ = ±(v/3)
1
2 if v > 0

• No critical points if v < 0
• A degenerate critical point at ξ = 0 if v = 0
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A One-Dimensional Model Problem

u(t, x) =
1√
2π

󰁝
eitϕ(ξ;v) 󰁥f (ξ) dξ, ϕξ(ξ; v) = v − 3ξ2

• For v > 0, we can use stationary phase methods to obtain (with
ξ0 = (v/3)

1
2 )

u(vt, t) = 2

󰁶
2π

6ξ0t
Re

󰀓
󰁥f (ξ0)eiϕ(ξ0;v)−iπ/4

󰀔

• For v < 0 we can use integration by parts to obtain

u(vt, t) ∼ o(t−n) for any n ∈ N
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A One-Dimensional Model Problem

u(t, x) =
1√
2π

󰁝
eitϕ(ξ;v) 󰁥f (ξ) dξ, ϕ(ξ; v) = ξv − ξ3

• For v ∼ 0,

u(vt, t) = (3t)−
1
3

󰁝
󰁥f (ξ/(3t)

1
3 )e−i(ξw+ξ3/3) dξ

where w = −t
2
3 v/3

1
3 .

Recalling that

Ai(z) =
1

2π

󰁝
ei(zs+s3/3) ds

we have

u(vt, v) ∼ 2π

(3t)
1
3

󰁦u0(0)Ai

󰀣
− t

2
3 v

3
1
3

󰀤

as t → ∞ with t
2
3 v fixed
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A Two-Dimensional Model Problem
󰀫
(vt + vxxx)x = 3λvyy

v(0, x, y) = v0(x, y)
(4)

The linear problem has a solution by Fourier analysis:

v(t, x, y) =
1

2π

󰁝
ei(p1x+p2y)eit(p3

1+3λp−1
1 p2

2)󰁥v0(p1, p2) dp1 dp2

For λ = 1 (KP I) introduce “slow” variables ζ = x/t, η = y/t and let

p1 = l − k, p2 = −(l2 − k2)

we get

v(t, x, y) =
1
π

󰁝
eitS(k,l;ζ,η)󰁥v0(l − k, k2 − l2)|l − k| dl dk

where
S(k, l; ζ, η) = (l − k)ζ − (l2 − k2)η + 4(l3 − k3)

is a phase function with four stationary points

(k, l) =
1
12

(η ± r, η ± r) , r =
󰁴

η2 − 12ζ
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A Two-Dimensional Model Problem

v(t, x, y) =
1
π

󰁝
eitS(k,l;ζ,η)󰁥v0(l − k, k2 − l2)|l − k| dl dk

S(k, l; ζ, η) = (l − k)ζ − (l2 − k2)η + 4(l3 − k3)

Critical points:

(k, l) =
1
12

(η ± r, η ± r) , r =
󰁴

η2 − 12ζ

Make a change of variables

k → k − η/12, l → l − η/12

Then

v(t, x, y) =
1
π

󰁝
e12itS(k,l;a)b(k, l)|l − k| dl dk

where
S(k, l; a) = a(l − k) +

1
3
(l3 − k3), a = 12ξ − η2
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A Two-Dimensional Model Problem

v(t, x, y) =
1
π

󰁝
e12itS(k,l;a)b(k, l)|l − k| dl dk

where
S(k, l; a) = a(l − k) +

1
3
(l3 − k3), a = 12ξ − η2

Note that

∂S
∂k

= −(a + k2)
∂S
∂l

= a + l2

so, if a = −r2, S has critical points at (±r,±r)

We have three regimes of asymptotic
behavior:

• a < 0: nondegenerate critical
points

• a = 0: degenerate critical point
• a > 0: no critical points

k

l k = l

(−r, r) (r, r)

(−r,−r) (r,−r)

a = −r2
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A Two-Dimensional Model Problem

Spatial Asymptotics: Set a = 12ζ − η2 and recall that ξ = x/t, η = y/t.

We will find that asymptotic behavior of the solution is as follows:

ζ

η
a = 0 (degenerate)

a > 0 (no critical points)a < 0 (critical points)

O
󰀃
t−1󰀄 o(t−1)
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Asymptotics with Ai
Perhaps special functions provide an economical and shared culture

analogous to books: places to keep knowledge in, so that we can use our
heads for better things.

Malcolm Berry, “Why are special functions special?”
Physics Today, 54, 2001

As we have seen, the Airy function

Ai(z) =
1

2π

󰁝 ∞

−∞
ei(zs+s3/3) ds

arises naturally in the study of oscillatory integrals with degenerate
stationary phase.

The Airy function satisfies the relations

|Ai(x)| ≤ C

(1 + |x|) 1
4

, −∞ < x < ∞

Ai(−x) ∼
x→∞

1√
π

󰀕
cos

󰀕
2
3

x
3
2 − π/4

󰀖
+O

󰀓
x−

3
2

󰀔󰀖
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Asymptotics - Stationary Phase
Consider the integral (for a < 0)

v(t, x, y) =
1
π

󰁝 ∞

−∞

󰁝 ∞

k
e12itS(k,l;a)b(k, l)(l − k)ψ(k, l) dl dk.

(here ψ(k, l) = ϕ(k)ϕ(l) localizes to the neighborhood of a critical point). If
S(k; a) = ak + k3/3, S(l; a) = al + l3/3 then

v(t, x, y) =
1
π

󰁝
f (k) g(k) dk =

1
π

󰁝
󰁥f (−ξ)󰁥g(ξ) dξ

where

f (k) = e−12itS(k,a), g(k) =
󰁝 ∞

k
e12itS(l;a)b(k, l)ψ(k, l)(l − k) dl

so that
󰁥f (ξ) =

√
2

(12t)1/3 Ai((12t)
2
3 (a − ξ/12t))

We obtain an O
󰀃
t−1󰀄 estimate by combining the time-decay of f with

careful estimates on the time decay of 󰁥g.
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Asymptotics - No Stationary Phase
Consider again (now for a > 0)

v(t, x, y) =
1
π

󰁝 ∞

−∞

󰁝 ∞

k
e12itS(k,l;a)b(k, l)(l − k) dl dk.

In the absence of stationary phase points, we may integrate by parts to obtain

v(t, x, y) =
1

πt

󰀕󰁝 ∞

−∞
e−12itS(k;a)

󰁝 ∞

k
e12itS(l;a)A(k, l; a) dl

󰀖

for

A(k, l; a) =
∂

∂l

󰀕
(l − k)b(k, l)

12(a + l2)

󰀖

and use a density argument to show that the integral is o(1) as t → ∞.
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Asymptotics - Degenerate Stationary Phase
Suppose now that a ∼ 0. We repeat the argument used for nondegenerate
stationary phase with some modifications. As before we write

v(t, x, y) =
1
π

󰁝 ∞

−∞

󰁝 ∞

k
e12itS(k,l;a)b(k, l)(l − k)ϕ(k, l) dl dk

as
v(t, x, y) =

1
π

󰁝
f (k)g(k) dk =

1
π

󰁝
󰁥f (−ξ)󰁥g(ξ) dξ

with

f (k) = e−12itS(k,a), g(k) =
󰁝 ∞

k
e12itS(l;a)ϕ(k, l)b(k, l)(l − k) dl

but we now only have
| 󰁥f (ξ)| ≲ t−

1
3

owing to degenerate stationary phase. We obtain an O
󰀓

t−
2
3

󰀔
estimate on

I(t, x, y) in this case.
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Connections

(1) The map
v0 → 󰁥v0(l − k, k2 − l2)

is precisely the linearization of the KP I scattering transform at the 0 potential

(2) The oscillatory integral

v(t, x, y) =
1
π

󰁝
eitS(k,l;ζ,η)󰁥v0(l − k, k2 − l2)|l − k| dl dk

is precisely the linearization of the KP I reconstruction formula at the 0
potential, with the correct phase function
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Nonlinear Problem - Reconstruction Formula

u(t, x, y) =
1
π

󰁝
eitS(k,l;ζ,η)i(l − k)(T+(k, l) + T−(k, l))µl(l, x; y, t) dl dk

+
1
π

󰁝
eitS(k,l;ζ,η)(T+(k, l) + T−(k, l))

∂µl

∂x
(l, x; y, t) dl dk

where
S(k, l; ζ, η) = (l − k)ζ − (l2 − k2)η + 4(l3 − k3)

and µl = µl(k, x; y, t) solves the following nonlocal Riemann-Hilbert
problem: let

(T ±
t,x,y f )(k) =

󰁝
T±(k, l)eitS(k,l;ζ,η) f (l) dl

and let C± be Cauchy projections on L2(R, dk) (recall that 󰀂C±󰀂L2→L2 = 1
and C+ − C− = I). Then

µl = 1 + CTµl

where
CT f = C+(T − f ) + C−(T + f )
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Nonlinear Problem - Reconstruction Formula

It will be useful to divide

u(t, x, y) = u1(t, x, y) + u2(t, x, y)

where

u1(t, x, y) =
1
π

󰁝
eitS(k,l;ξ,η)i(l − k) f (k, l) dl dk

u2(t, x, y) =
1
π

󰁝
eitS(k,l;ξ,η)i(l − k) f (k, l)(µl(l, x; y, t)− 1) dl dk

+
1
π

󰁝
eitS(k,l;ξ,η) f (k, l)

∂µl

∂x
(l, x; y, t) dl dk

where
f (k, l) = T+(k, l) + T−(k, l).
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Nonlocal Riemann-Hilbert Problem
Let

(T ±
t,x,y f )(k) =

󰁝
T±(k, l)eitS(k,l;ζ,η) f (l) dl

and let C± be Cauchy projections on L2(R, dk). Then

µl = 1 + CTµl (5)

where
CT f = C+(T − f ) + C−(T + f )

is a Hilbert-Schmidt integral operator with norm

󰀂CT󰀂H.S. ≲
󰀐󰀐T+

󰀐󰀐
L2 +

󰀐󰀐T−󰀐󰀐
L2 .

Proposition Suppose that T± ∈ L2(R2) has small norm. Then (I − CT)
−1

exists as a map from L2(R, dk) to itself with bounds uniform in x, y, t.

Theorem Suppose that T± ∈ L2(R2) of small norm. There is a unique
solution µl = µl(k, x; y, t) of (5) with µl − 1 ∈ L2(R, dk).
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Large-Time Asymptotics: Scattering Solution
From

µl − 1 = CT(1) + CT(µ
l − 1)

we get the solution formula

µl − 1 = (I − CT)
−1(CT1)

Note that
CT1 = C+(T −

t,x,y1) + C−(T +
t,x,y1)

where
T ±

t,x,y1 =
󰁝

T±(k, l)eitS(k,l;ζ,η) dl

Similarly
∂µl

∂x
= (I − CT)

−1
󰀗

∂

∂x
(CT(1)) + C∂T/∂x(µ

l − 1)
󰀘

Large-time asymptotics in L2(R) (with parameters x, y) are determined by

CT(1),
∂

∂x
(CT(1))
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Large-Time Asymptotics: Scattering Solution
CT(1) and

∂

∂x
(CT(1)) have L2 norms bounded by the L2 norms of

T ±
t,x,y(1) =

󰁝
T±(k, l)eitS(k,l;ζ,η) dl

∂

∂x
T ±

t,x,y(1) =
󰁝

i(l − k)T±(k, l)eitS(k,l;ζ,η) dl

Lemma Let δ > 0. The following estimates hold (recall a = 12ξ − ζ2)

󰀂CT(1)󰀂L2 ≲

󰀻
󰁁󰀿

󰁁󰀽

t−
1
2 , a < −δ

t−
1
3 , |a| < δ

t−1, a > δ

󰀐󰀐󰀐󰀐
∂

∂x
CT(1)

󰀐󰀐󰀐󰀐
L2

≲

󰀻
󰁁󰀿

󰁁󰀽

t−
1
2 , a < −δ < 0

t−
1
3 , |a| < δ

t−1, a > δ
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Large-Time Asymptotics: Scattering Solution
Proving the estimates on CT(1) and

∂

∂x
CT(1)–consider T +

t,x,y(1):

T +
t,x,y(1)(k) =

󰁝 ∞

k
T+(k, l)eitS(k,l;ξ,η) dl

By the change of variables (k, l) → (k + η/12, l + η/12), we get

T +
t,x,y(k) = e−12it(ak+k3/3)

󰁝 ∞

k
󰁨T+(k, l)e12it(al+l3/3) dl

Using Fourier transforms we can rewrite the integral as
󰁕

h(k, ξ)g(ξ; t, a) dξ

where h(k, ξ) is a partial Fourier transform of 󰁨T and

g(ξ; t, a) = (2π)−
1
2

󰁝 ∞

k
e−iξle12it(al+l3/3) dl

is an Airy type integral with

|g(ξ; t, a)| ≲ r t−
1
2 (1 + |ξ|), a < −r2

|g(ξ; t, a)| ≲ c t−
1
3 , |a| < c
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Long-Time Asymptotics: Scattering Solution
From the estimates on CT(1) and C∂T/∂x(1) and the formulas

µl − 1 = (I − CT)
−1(CT1),

and

∂µl

∂x
= (I − CT)

−1
󰀗

∂

∂x
(CT(1)) + C∂T/∂x(µ

l − 1)
󰀘

,

we obtain:

Proposition Let δ > 0. The following estimates hold (recall a = 12ζ − η2):

󰀐󰀐󰀐µl − 1
󰀐󰀐󰀐

L2
≲

󰀻
󰁁󰀿

󰁁󰀽

t−
1
2 , a < −δ,

t−
1
3 , |a| ≤ δ,

t−1, a > δ.

󰀐󰀐󰀐󰀐󰀐
∂µl

∂x

󰀐󰀐󰀐󰀐󰀐
L2

≲

󰀻
󰁁󰀿

󰁁󰀽

t−
1
2 , a < −δ

t−
1
3 , |a| ≤ δ

t−1, a > δ
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The Return of Ai
The reconstruction formula may be written

u(t, x, y) = u1(t, x, y) + u2(t, x, y)

where

u1(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l) dk dl

u2(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l)(µl(l + η/12, x; y, t)− 1) dl dk

+
1
π

󰁝
e12itS(k,l;a) f (k, l)

∂µl

∂x
(l + η/12, x; y, t) dl dk

where
f (k, l) = T+(k, l) + T−(k, l)

We will analyze u1 using Airy asymptotics as in the linear problem, and u2
by a combination of Airy asymptotics and L2 estimates on the solutions of
the nonlocal Riemann-Hilbert problem
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Local Term: Ai and Asymptotics

u1(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l) dk dl

Exactly as in the linear case, we obtain

u1(t, x, y) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

O
󰀃
t−1󰀄 , a < −δ,

O
󰀓

t−2/3
󰀔

, |a| < δ,

o(t−1), a > δ.

Remark: For the local term, we can obtain a result reminiscent of the
asymptotic formula of Manakov, Santini, and Takhtajan:

u1(t, x, y) ∼
t→∞

1
t

Re
󰀓

ei(16tr3−π/2) 󰁨T+(−r, r) + e−i(16tr3−π/2)) 󰁨T−(r,−r) + o(1)
󰀔
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Nonlocal Term

u2(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l)(µl(l + η/12, x; y, t)− 1) dl dk

+
1
π

󰁝
e12itS(k,l;a) f (k, l)

∂µl

∂x
(l + η/12, x; y, t) dl dk

Our strategy will be to make:

(1) L2 estimates on µl and ∂µl/∂x together with L2 estimates on scattering
data for the integration over l

(2) Stationary phase estimates for the integration over k

Nondegenerate stationary phase:

We have
󰀐󰀐󰀐µl − 1

󰀐󰀐󰀐
L2

l

≲ t−
1
2 and

󰀐󰀐󰀐󰀐󰀐
∂µl

∂x

󰀐󰀐󰀐󰀐󰀐
L2

l

≲ t−
1
2

We gain an additional O
󰀓

t−1/2
󰀔

from nondegenerate stationary phase in the
k integration
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Nonlocal Term

u2(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l)(µl(l + η/12, x; y, t)− 1) dl dk

+
1
π

󰁝
e12itS(k,l;a) f (k, l)

∂µl

∂x
(l + η/12, x; y, t) dl dk

Our strategy will be to make:

(1) L2 estimates on µl and ∂µl/∂x together with L2 estimates on scattering
data for the integration over l

(2) Stationary phase estimates for the integration over k

Degenerate stationary phase:

We have
󰀐󰀐󰀐µl − 1

󰀐󰀐󰀐
L2

l

≲ t−
1
3 and

󰀐󰀐󰀐󰀐󰀐
∂µl

∂x

󰀐󰀐󰀐󰀐󰀐
L2

l

≲ t−
1
3

We gain an additional O
󰀓

t−
1
3

󰀔
from degenerate stationary phase in the k

integration
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Nonlocal Term

u2(t, x, y) =
1
π

󰁝
e12itS(k,l;a)i(l − k) f (k, l)(µl(l + η/12, x; y, t)− 1) dl dk

+
1
π

󰁝
e12itS(k,l;a) f (k, l)

∂µl

∂x
(l + η/12, x; y, t) dl dk

Our strategy will be to make:

(1) L2 estimates on µl and ∂µl/∂x together with L2 estimates on scattering
data for the integration over l

(2) Stationary phase estimates for the integration over k

No Stationary Phase:

We have
󰀐󰀐󰀐µl − 1

󰀐󰀐󰀐
L2

l

= O
󰀃
t−1󰀄 and

󰀐󰀐󰀐󰀐󰀐
∂µl

∂x

󰀐󰀐󰀐󰀐󰀐
L2

l

= O
󰀃
t−1󰀄

We gain an additional O
󰀃
t−1󰀄 decay through integration by parts in the k

variable
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Next steps

• Obtain sharp(er) asymptotics for µl(l, x; y, t), the solution of the
nonlocal RHP

• Obtain sharp(er) estimates for u(t, x, y) near the critical region
• Obtain complete asymptotics in the sense of Kiselev’s work on KP II

Thank you for your attention!


