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The KdV Equation

The Korteweg-de Vries (KdV) equation

qt + qxxx − 6qqx = 0

is one of the earliest examples of a completely integrable dispersive PDE. It
admits a Lax Representation: given q = q(x, t) ∈ C∞(R × R), there are
differential operators L(t) and A(t) given by

L(t) = −∂2
x + q

A(t) = −4∂3
x + 6q∂x + 3qx

so that the Lax equation

∂

∂t
L(t) + [L(t), A(t)] = 0

is equivalent the the KdV equation.
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Another Point of View

Equivalently, the Lax condition

∂

∂t
L(t) = [A(t), L(t)]

is the compatibility condition for the system of equations

L(t)ψ = λψ (1)

ψt = A(t)ψ (2)

for ψ = ψ(x, t) to have a solution: From (1),

∂

∂t
(L(t)ψ) = L̇ψ + Lψt = L̇ψ + LAψ

while
∂

∂t
(λψ) = λψt = λAψ = A(λψ) = ALψ

which gives
L̇ψ + (LA − AL)ψ = 0
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Zero-Curvature Representation
Let

w =

󰀕
ψ
ψx

󰀖

Using ψxx = (q − λ)ψ to express higher-order derivatives of ψ in terms of ψ
and ψx we obtain

∂

∂x
w =

󰀣
0 1

q − λ 0

󰀤
w

∂

∂t
w =

󰀣
−qx (2q + 4λ)

−qxx + 2q2 + 2λq − 4λ2 qx

󰀤
w

This new form of the Lax equations is called a zero-curvature representation

∂w
∂x

= Uw,

∂w
∂t

= Vw
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Zero-Curvature Representation

The compatibility condition for the system

∂w
∂x

= Uw,
∂w
∂t

= Vw

is obtained by cross-differentiation:

wxt =
∂U
∂t

w + UVw, wtx =
∂V
∂x

w + VUw

so
∂U
∂t

− ∂V
∂x

= [U, V]

In the case of KdV, the compatibility condition becomes
󰀣

0 0

qt + qxxx − 6qqx 0

󰀤
= 0

which is exactly the KdV equation
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The AKNS-ZS System

We can begin with a linear equation
∂w
∂x

= Uw and attempt to find matrices

V which lead to integrable systems.

The AKNS system is given by

∂w
∂x

= Uw, U = −iλσ3 +

󰀣
0 q

r 0

󰀤

where q and r are functions of x and t, and

σ3 =

󰀕
1 0
0 −1

󰀖

This system, and integrable equations associated to it, were studied in a
landmark paper by Ablowitz, Kaup, Newell and Segur (1974).

The case where r = ±q is called the Zakharov-Shabat system
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Cubic Nonlinear Schrödinger Equation
The Lax representation

∂w
∂x

= −iλσ3w +

󰀣
0 q

r 0

󰀤
w

∂w
∂t

= −iλ2σ3w + λ

󰀣
0 q

r 0

󰀤
w +

󰀣
− 1

2 iqr 1
2 iqx

− 1
2 irx

1
2 iqr

󰀤
w

gives rise to the coupled system

iqt +
1
2

qxx − q2r = 0

−irt +
1
2

rxx − r2q = 0

Taking r = ±q we get the cubic nonlinear Schrödinger equation

iqt +
1
2

qxx ∓ |q|2q = 0

which is defocussing for the − sign and focussing for the + sign.
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Lax Representation and Inverse Scattering

A Lax representation

∂w
∂x

= U(q)w

∂w
∂t

= V(q)w

defines

(1) A spectral problem which maps a given potential q to scattering data r

(2) A time evolution of scattering solutions which determines how the
scattering data evolve in time

(3) A Riemann-Hilbert problem which defines a map from scattering data r to
the potential q

This leads to a strategy for solving the associated nonlinear equation by
inverse scattering
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NLS Equation: Direct Scattering Map

Spectral Problem:
∂Ψ
∂x

= −izσ3Ψ +

󰀕
0 q
q 0

󰀖
Ψ

Fix z. One can show that:

(1) det Ψ(x) is constant for any solution

(2) If ψ1 and ψ2 are solutions, ψ1(x) = ψ2(x)M for a constant matrix M

(3) The map

ψ(x, z) 󰀁→ σ1ψ(x, z)σ−1
1 , σ1 =

󰀕
0 1
1 0

󰀖

preserves the solution space

For q = 0, z = λ ∈ R, Ψ(x, λ) = e−iλσ3xΨ(0) are exact solutions.

For q ∕= 0, z = λ ∈ R, look for solutions Ψ± satisfying

lim
x→±∞

Ψ±(x)eiλxσ3 = I
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NLS Equation: Direct Scattering Map

Spectral Problem:
∂Ψ
∂x

= −izσ3Ψ +

󰀕
0 q
q 0

󰀖
Ψ

For z = λ ∈ R, there exist unique solutions Ψ± satisfying
limx→±∞ Ψ±(x)eiλxσ3 = I.

From properties (2) and (3), there is a matrix

T(λ) =

󰀣
a(λ) b(λ)

b(λ) a(λ)

󰀤
, |a(λ)|2 − |b(λ)|2 = 1

so that Ψ+(x, λ) = Ψ−(x, λ)T(λ).

The functions a(λ), b(λ) are scattering data for q, and are uniquely determined
by

r(λ) = −b(λ)/a(λ)

The map R : q 󰀁→ r is called the direct scattering map
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NLS: Direct Scattering Map

Deift and Zhou (2003) proved the following mapping property of the direct
scattering map. Let

H1,1(R) = {u ∈ L2(R) : u′, xu ∈ L2(R)}

H1,1
1 (R) = {u ∈ H1,1(R) : 󰀂u󰀂L∞ < 1}

Theorem (Deift-Zhou)
The direct scattering map R : q → r is a Lipschitz continuous map from H1,1(R)

onto H1,1
1 (R).

A consequence is that, for q ∈ H1,1(R), the corresponding reflection
coefficient satisfies the bound

|r(λ)| ≤ ρ

for some ρ ∈ (0, 1).
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NLS: Time Evolution of Scattering Data

Suppose now q = q(x, t) and that Ψ±(x, t, λ) solves

∂Ψ
∂x

= UΨ, U = −izσ3 +

󰀕
0 q
q 0

󰀖

We seek solutions
W±(x, t, λ) = Ψ±(x, t, λ)C(t, λ)

of
∂W±

∂t
= VW±

By substitution

∂Ψ±

∂t
C± + Ψ± ∂C±

∂t
= VΨ±C±

or

∂C±

∂t
= (Ψ±)−1VΨ±C± − (Ψ±)−1 ∂Ψ±

∂t
C±
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NLS: Time Evolution of Scattering Data

∂C±

∂t
= (Ψ±)−1VΨ±C± − (Ψ±)−1 ∂Ψ±

∂t
C±

Recall

V = −iλ2σ3 + λ

󰀣
0 q

q 0

󰀤
+

󰀣
− 1

2 i|q|2 1
2 iqx

− 1
2 iqx

1
2 i|q|2

󰀤

Assume
Ψ±(x, t, λ) = e−iλxσ3 + E±(x, λ, t)

where

E±(x, λ, t),
∂E±

∂t
(x, λ, t) → 0 as x → ±∞

Assume q, qx → 0 as x → ±∞. Taking x → ±∞ we conclude

∂C±

∂t
= −iλ2σ3C±

so
C±(t, λ) = e−iλ2tσ3
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NLS: Time Evolution of Scattering Data

We will compute the time evolution of

T(λ, t) = (Ψ−(x, t, λ))−1Ψ+(x, t, λ)

Since W± = Ψ±e−iλ2tσ3 satisfies
∂W±

∂t
= VW±, it follows that

∂Ψ±

∂t
= iλ2Ψ±σ3 + VΨ±

Hence

∂T(λ, t)
∂t

= −(Ψ−)−1 ∂Ψ−

∂t
(Ψ−)−1Ψ+ + (Ψ−)−1 ∂Ψ+

∂t
= −iλ2σ3T(λ, t)− (Ψ−)−1VΨ+ + iλ2T(λ, t)σ3 + (Ψ−)−1VΨ+

= iλ2[T(λ, t), σ3]
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NLS: Time Evolution of Scattering Data

∂T(λ, t)
∂t

= iλ2[T(λ, t), σ3]

or
∂

∂t

󰀣
a b

b a

󰀤
= iλ2

󰀣
0 −2b

2b 0

󰀤

Hence

a(λ, t) = a(λ, 0)

b(λ, t) = e2iλ2tb(λ, 0)

so that

r(λ, t) = − b(λ, t)
a(λ, t)

= e2iλ2tr(λ, 0).
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NLS: Inverse Scattering Map

Recall the spectral problem

∂Ψ
∂x

= −izσ3Ψ +

󰀕
0 q
q 0

󰀖
Ψ

and solutions Ψ± with limx→±∞ eiλxσ3 Ψ± = I. For a solution Ψ, let

Ψ(x, z) = M(x, z)e−izxσ3

so that
∂

∂x
M(x, z) = −iz ad(σ3)M(x, z) +

󰀕
0 q
q 0

󰀖
M(x, z)

For a matrix A,
ad(σ3)A = [σ3, A]

We denote by M± the normalized Jost solutions, i.e.,

Ψ±(x, z) = M±(x, z)e−izxσ3
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NLS: Beals-Coifman Solutions

∂

∂x
M(x, z) = −iz ad(σ3)M(x, z) +

󰀕
0 q
q 0

󰀖
M(x, z)

Beals and Coifman (1984) showed that this equation admits special solutions,
now called the Beals-Coifman solutions, with the following properties:

(i) For each x ∈ R, M(x, z) is analytic in C \ R

(ii) For each x, M(x, z) has continuous boundary values

M±(x, λ) = lim
ε↓0

M(x, λ ± iε)

(iii) For each z ∈ C \ R,

M(x, z) → I as x → +∞, M(x, z) is bounded as x → −∞

(iv) The potential q(x) can be recovered from their asymptotic behavior:

q(x) = lim
z→∞

2iz M12(x, z)
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NLS: Riemann-Hilbert Problem

Most importantly, the Beals-Coifman solutions satisfy a Riemann-Hilbert
Problem:

Riemann-Hilbert Problem 1. For given r and x ∈ R, find M(x, z) so that:

(i) M(x, z) is analytic in C \ R for each x ∈ R

(ii) limz→∞ M(x, z) = I

(iii) M(x, z) has continuous boundary values M±(x, λ) on R

(iv) The jump relation

M+(x, λ) = M−(x, λ)V(x, λ), V(x, λ) =

󰀣
1 − |r(λ)|2 −r(λ)e−2iλx

r(λ)e2iλx 1

󰀤

holds, where r is the scattering data.

In (ii), the limit is uniform in proper subsectors of the upper and lower
half-planes
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NLS: Inverse Scattering Map

We can now define the inverse scattering map I : r 󰀁→ q as follows.

Step 1: Given r ∈ H1,1
1 (R), solve the Riemann-Hilbert problem:

Find M(x, z) analytic in z ∈ C \ R for each x so that

(i) limz→∞ M(x, z) = I

(ii) M(x, z) has continuous boundary values M±(x, λ) on R

(iii) The jump relation

M+(x, λ) = M−(x, λ)V(x, λ), V(x, λ) =

󰀣
1 − |r(λ)|2 −r(λ)e−2iλx

r(λ)e2iλx 1

󰀤

holds

Step 2: Recover q(x) from the reconstruction formula

q(x) = lim
z→∞

2izM12(x, z)
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NLS: Inverse Scattering Map

Deift and Zhou (2003) proved the following mapping property of the inverse
scattering map. Recall

H1,1(R) = {u ∈ L2(R) : u′, xu ∈ L2(R)}

H1,1
1 (R) = {u ∈ H1,1(R) : 󰀂u󰀂L∞ < 1}

Theorem (Deift-Zhou)
The inverse scattering map I : r → q is a Lipschitz continuous map from H1,1

1 (R)

onto H1,1(R).
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NLS: Reconstruction Formula

Combining the three results:

(1) The direct scattering map R : q → r is a Lipschitz map from H1,1(R)

onto H1,1
1 (R)

(2) The reflection coefficient evolves according to r(λ, t) = e2iλ2tr(λ, 0), a
continuous curve in H1,1(R)

(3) The inverse scattering map I : r → q is a Lipschitz map from H1,1
1 (R)

onto H1,1(R)

we obtain the solution formula

q(t, x) = I
󰀓

e2iλ2tR(q0)
󰀔
(x)

which defines a continuous map

H1,1(R)× R ∋ (q0, t) 󰀁→ H1,1(R)
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Lipschitz Continuity of R

We’ll give key ideas of the proof that

R : H1,1(R) ∋ q → r ∈ H1,1
1 (R)

is Lipschitz continuous. Recall that Ψ±(x, λ) solve

∂Ψ+

∂x
= iλσ3Ψ + QΨ, Q =

󰀕
0 q
q 0

󰀖

and

Ψ+(x, λ) = Ψ−(x, λ)

󰀣
a(λ) b(λ)

b(λ) a(λ)

󰀤

with r(λ) = −b(λ)/a(λ).
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Lipschitz Continuity of R

To study R : q → r, set

Ψ+(x, λ) = e−iλxσ3 N(x, λ)

which satisfies
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

∂

∂x
N(x, λ) =

󰀣
0 e2iλxq(x)

e−2iλxq(x) 0

󰀤
N(x, λ),

lim
x→+∞

N(x, λ) = I.

(3)

and note that
lim

x→−∞
N(x, λ) = T(λ).
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Lipschitz Continuity of R

The function N obeys the integral equation

N(x, λ) = I −
󰁝 ∞

x

󰀣
0 e2iλyq(y)

e−2iλyq(y) 0

󰀤
N(y, λ) dy

and

lim
x→−∞

N(x, λ) =

󰀣
a(λ) b(λ)

b(λ) a(λ)

󰀤

Focus on
󰀣

N11(x, λ)

N21(x, λ)

󰀤
=

󰀣
1

0

󰀤
−

󰁝 ∞

x

󰀣
e2iλyq(y)N21(y, λ)

e−2iλyq(y)N11(y, λ)

󰀤
dy

which is a Volterra-type integral equation solvable by a Volterra series
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Lipschitz Continuity of R
Renaming N11(x, λ) = a(x, λ), N21(x, λ) = b(x, λ), we have

a(x, λ) = 1 +
∞

∑
n−1

A2n(x, λ), b(x, λ) = −
∞

∑
n=0

A2n+1(x, λ)

and on taking limits

a(λ) = 1 +
∞

∑
n−1

A2n(λ), b(λ) = −
∞

∑
n=0

A2n+1(λ)

where

An(λ) =
󰁝

y1<y2<...<yn

Qn(y1, . . . yn)e2iλφn(y1,...,yn) dyn . . . dy1,

ϕn is a real phase function, and

Qn(y1, . . . , yn) =

󰀻
󰁁󰀿

󰁁󰀽

∏m
j=1 q(y2j−1)q(y2j), n = 2m,

q(y1)∏m
j=1 q(y2j)q(y2j+1), n = 2m + 1.
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Lipschitz Continuity of R
We have the multilinear series

a(λ) = 1 +
∞

∑
n−1

A2n(λ), b(λ) = −
∞

∑
n=0

A2n+1(λ)

where Am is a multilinear integral with phase function and amplitude Qm:

Qn(y1, . . . , yn) =

󰀻
󰁁󰀿

󰁁󰀽

∏m
j=1 q(y2j−1)q(y2j), n = 2m,

q(y1)∏m
j=1 q(y2j)q(y2j+1), n = 2m + 1.

From these series one can analyze the map q 󰀁→ r in four stages:

(1) Show that R : L1(R) → L∞(R)

(2) Show that R : L1(R) ∩ L2(R) → L2(R)

(3) Show that R : H1,1(R) → H0,1(R)

(4) Show that R : H1,1(R) → H1,1(R)
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Lipschitz Continuity of I

To prove Lipschitz continuity of I : r → q, we need to:

1. Reduce the Riemann-Hilbert problem to an integral equation, the
Beals-Coifman integral equation

2. Show that the Beals-Coifman integral equation admits a unique
solution µ for r ∈ H1,1

1 (R)

3. Find an explicit reconstruction formula in terms of r and µ and use it to
establish Lipschitz continuity of I
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Lipschitz Continuity of I

Remark: Recall the ∂ operator for z = x + iy:

∂ =
1
2

󰀕
∂

∂x
+ i

∂

∂y

󰀖

and that ∂F = 0 if F is analytic.

Our Riemann-Hilbert problem can be viewed as a ∂ problem with boundary
conditions:

(∂M)(z) = 0 z ∈ C \ R,

M+(z) = M−(z)

󰀣
1 − |r(λ)|2 r(λ)e−iλx

−r(λ)eiλx 1

󰀤
, z ∈ R

It is natural that a PDE boundary value problem can be reduced to a
boundary integral equation
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Beals-Coifman Integral Equation

We can write the jump relation for M in the form

M+(z) = (I − w−
x (λ))

−1(I + w+
x (λ))M−(z)

where

w−
x (λ) =

󰀣
0 0

e2iλxr(λ) 0

󰀤
, w+

x (λ) =

󰀕
0 −e2iλxr(λ)
0 0

󰀖

Now let

µ(x, λ) = M+(x, λ)(I + w+
x (λ))

−1 = M−(x, λ)(I − w−
x (λ))

−1

Then
M+(x, λ)− M−(x, λ) = µ(x, λ)(w+

x (λ) + w−
x (λ))
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Beals-Coifman Integral Equation

Recall

µ(x, λ) = M+(x, λ)(I + w+
x (λ))

−1 = M−(x, λ)(I − w−
x (λ))

−1 (4)

and
M+(x, λ)− M−(x, λ) = µ(x, λ)(w+

x (λ) + w−
x (λ))

From the formula

M(x, z) = I +
1

2πi

󰁝

R

M+(x, λ)− M−(x, λ)

λ − z
dλ

we get

M(x, z) = I +
1

2πi

󰁝

R

µ(x, λ)(w+
x (λ) + w−

x (λ))

λ − z
dλ (5)

We will use (4) and (5) to derive the Beals-Coifman integral equation.
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Beals-Coifman Integral Equation
Recall that (I + w−

x (λ))µ(x, λ) = M+(x, λ).

For f ∈ H1(R), define the Cauchy projectors C± by

(C± f )(λ) = lim
ε↓0

󰁝 f (s)
s − (λ ± iε)

ds,

and recall that 󰀂C±󰀂L2→L2 = 1 and C+ − C− = I. Using

M(x, z) = I +
1

2πi

󰁝

R

µ(x, λ)(w+
x (λ) + w−

x (λ))

λ − z
dλ

we take boundary values to recover

M+(x, λ) = I + C+(µw+
x + µw−

x ).

Hence
(I + w−

x (λ))µ = I + C+(µw+
x + µw−

x )

or
µ = I + C+(µw−

x ) + C−(µw+
x )
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Beals-Coifman Integral Equations

Let
Cw(h) = C+(hw−

x ) + C−(hw+
x )

The equation
µ = I + Cw(µ) (6)

is the Beals-Coifman Integral Equation.

Theorem
Suppose that r ∈ H1,1(R) with 󰀂r󰀂L∞ = ρ < 1. There exists a unique solution µ of
(6) with µ(λ)− 1 ∈ L2(R).
This is a consequence of the operator estimate

󰀂Cw󰀂L2→L2 = 󰀂r󰀂L∞

and the solution formula

µ − I = (I − Cw)
−1Cw(I)

.
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Vanishing Theorem

Using the reduction of the RHP to an integral equation, we can also prove a
uniqueness theorem for the RHP.

Theorem (Vanishing Theorem)
Fix x ∈ R, suppose r ∈ H1,0(R) with 󰀂r󰀂L∞ < 1 and suppose that
n(x, z) : C \ R → M2(C) solves the Riemann-Hilbert problem with boundary
values n±(x, z) ∈ L2(R). Then n(x, z) ≡ 0.

Idea of proof: Repeat the reduction to a Beals-Coifman integral equation with

ν(x, λ) = n+(x, λ)(I + w+
x (λ))

−1 = n−(x, λ)(I − w−
x (λ))

−1

and arrive at the integral equation

ν = Cwν

which has only the zero solution.

A vector n satisfying the hypothesis of the vanishing theorem is called a null
vector for the RHP.
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Reconstruction Formula

The solution µ of the Beals-Coifman integral equation determines the
solution M of the Riemann-Hilbert problem via

M(x, z) = I +
1

2πi

󰁝 ∞

−∞

µ(x, λ)(w+
x (λ) + w−

x (λ))

λ − z
dλ

Theorem
Suppose that r ∈ H1,1

1 (R), let M(x, z) be the unique solution of the
Riemann-Hilbert problem. Then

d
dx

M(x, z) = −iz ad σ3(M) + Q(x)M(x, z)

where

Q(x) =
󰀕

0 q(x)
q(x) 0

󰀖
, q(x) = − 1

π

󰁝
r(s)e−2ixsµ11(x, s) ds
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Idea of Proof

To prove that

d
dx

M(x, z) = −iz ad σ3(M) + Q(x)M(x, z)

and identify Q, differentiate the jump relation for M to obtain
󰀕

∂M+

∂x
+ iλ ad σ3(M+)

󰀖
=

󰀕
∂M−

∂x
+ iλ ad σ3(M−)

󰀖
V(x, λ)

and show that
iλ ad σ3(M±)− Q(x) ∈ L2(R)

to conclude that

n(x, z) =
∂

∂x
M(x, z) + iλ ad σ3(M(x, z))− Q(x)M(x, z)

is a null vector for the Riemann-Hilbert problem, hence n(x, z) ≡ 0.
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Lipschitz Continuity of I

From
q(x) = − 1

π

󰁝
r(s)e−2ixsµ11(x, s) ds

write q(x) = q0(x) + q1(x) where

q0(x) = − 1
π

󰁝
r(s)e−2ixs ds

q1(x) = − 1
π

󰁝
r(s)e−2ixs(µ11(x, s)− 1) ds

The map r 󰀁→ q0 is a Fourier transform with the required properties.

To analyze r 󰀁→ q1 we use the identity

q′1(x) = −q(x)
󰀕

1
π

󰁝
r(s)e−2ixsµ21(x, s) ds

󰀖

and use Lipschitz continuity properties of r 󰀁→ µ11 − 1 and r 󰀁→ µ12.


