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The Davey-Stewartson II Equation

The Davey-Stewartson II (DS II) equation is a nonlinear dispersive equation
in two space dimensions. The Cauchy problem is






iqt + 2(∂2
z + ∂2

z)q + (g + g)q = 0

∂zg + 4ε∂z(|q|2) = 0

q(0, z) = q0(z)

where ε = ±1, z = x1 + ix2 and

∂z =
1
2


∂

∂x1
− i

∂

∂x2


, ∂z =

1
2


∂

∂x1
+ i

∂

∂x2


,

The case ε = 1 is the defocussing case , and the case ε = −1 is the focussing
case. In what follows, the notation f (z) for a function of z = x1 + ix2 does not
imply that f is analytic.

Ablowitz and Haberman (1975) showed that the DS II equation is completely
integrable.
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Local Well-Posedness Theory for DS II

Ghidaglia and Saut (Nonlinearity 3 (1990), no. 2, 475-506) proved:

Theorem
For any q0 ∈ L2(R2), there is a T∗ > 0 and a unique solution q(t) to the DS II
equation belonging to C((0, T∗), L2(R2)) ∩ L4(R2 × (0, T∗)) with q(t) = q0 and
q(t)L2 = q0L2 .

This result applies to the DS II equation with either ε = 1 or ε = −1. For the
focussing DS II equation, there is a solution which blows up in finite time
(Ozawa, Proc. Roy. Soc. London 436 (1992)).
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First Result

Theorem (Perry 2014)
Suppose that q0 ∈ H1,1(R2). The Davey-Stewartson II equation has a global
solution q(t, z) with q(t, · ) ∈ H1,1(R2), and the map

(t, q0) → q(t, · )
R × H1,1(R2) → C(R, H1,1(R2)

is locally Lipschitz continuous. Moreover, if q0 ∈ H1,1(R2) ∩ L1(R2) with
(Sq0)(0) = 0, then

q(t, z) = v(t, z) = o(t−1)

where v(t, z) solves the problem

i∂tv + 2(∂2
z + ∂2

z)v = 0

with initial data
v(0, z) = Fa(S(q0)).
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Second Result

Theorem (Nachman, Regev, Tataru 2020)
Suppose that q0 ∈ L2(R2). The Davey-Stewartson II equation has a unique global
solution q(t, z) ∈ C(R, L2(C)) ∩ L4

t,z(R × C) with

(i) q(0)L2(C) = q(t)L2(C) and


R×C
|q(t, z)|4 dt dz ≤ C(q0L2(C))

(ii) If q1(t, · ) and q2(t, · ) are solutions corresponding to initial data q1 and q2
with qiL2(C) ≤ R, i = 1, 2, then

q1(t, · )− q2(t, · )L2(C) ≤ C(R) q1 − q2L2(C) .

We will discuss Perry’s result in this lecture, using ideas of Nachman, Regev,
and Tataru to simplify the proofs. We will discuss Nachman, Regev, and
Tataru’s result in more detail in the next lecture.
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Lax Representation

The DS II equation is the compatibility condition for the following system of
equations for unknowns ψ1(z, t, k) and ψ2(z, t, k):

∂zψ1 = qψ2

∂zψ2 = εqψ1

∂tψ1 = 2i∂2
zψ1 + 2i(∂zq)ψ2 − 2iq∂zψ2 + gψ1

∂tψ2 = −2i∂2
zψ2 − 2iε(∂zq)ψ1 + 2iεq∂zψ1 − igψ2

One can check that DS II is the compatibility condition by
cross-differentiating in x and t.

The first system of equations defines a scattering transform

S : q → s,

and the second system of equations determines the time evolution of
scattering data. We will mainly discuss the defocussing (ε = +1) case
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Interlude: Dimension Counting

In one space dimension, the scattering
data is a scalar function and S : q → r eikx →

← r(k)e−ikx t(k)eikx →

In two space dimensions, scattering
data is a function

S(ω, ω′; E), ω, ω′ ∈ S1 and E ∈ R

which actually depends on three
variables! Thus, in two dimensions, it
is more natural to consider scattering
(and inverse scattering) at fixed energy
to get a map S : q → s

ω′

ω
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Direct Scattering
The defocusing DS II flow is linearized by a zero-energy spectral problem for
the operator

L =


∂z 0

0 ∂z


− Q(z), Q(z) =


0 q(z)

q(z) 0



To find the scattering transform for q ∈ S(R2), look for solutions


ψ1(z, k)

ψ2(z, k)


=


m1(z, k)eikz

m2(z, k)eikz


, lim

|z|→∞
(m1(z, k), m2(z, k)) = (1, 0).

of Lψ = 0 where k = k1 + ik2, z = x1 + ix2, and kz denotes complex
multiplication. One can check that






∂zm1(z, k) = q(z)m2(z, k)

(∂z + ik)m2(z, k) = q(z)m1(z, k)

lim
|z|→∞

(m1(z, k), m2(z, k) = (1, 0)
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Direct Scattering
The scattering problem for m1 and m2 is equivalent to






m1(z, k) = 1 +
1
π



C

1
z − w

q(w)m2(w, k) dw

m2(z, k) =
1
π



C

ek(z − w))

z − w
q(w)m1(z, w) dw

where ek(z) = ei(kz+kz). For q ∈ S(R2), we have

m1(z, k) ∼
z→∞

1 + ∑
j≥1

aj(k)

zj , m2(z, k) ∼
z→∞

e−k(z) ∑
j≥1

bj(k)

zj

The scattering transform is (Sq)(k) = −ib1(k) or, from the integral equations

(Sq)(k) = − i
π



C
ek(z)q(z)m

1(z, k) dz.

which is perturbation of the antilinear ‘Fourier transform’

(Faq)(k) = − i
π



C
ek(z)q(z) dz.
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Inverse Scattering
Let s(k) = S(q)(k). If q ∈ S(R2), it follows from the work of Beals and
Coifman that s ∈ S(R2).

The scattering solutions m1, m2 also obey the dual set of equations

∂km1(z, k) = e−k(z)s(k)m2(z, k)

∂km2(z, k) = e−k(z)s(k)m1(z, k)

lim
|k|→∞

(m1(z, k), m2(z, k)) = (1, 0).

With the change of variables n1 = m1, n2 = e−km2 we obtain

∂kn1(z, k) = s(k)n2(z, k)

(∂k + iz)n2(z, k) = s(k)n1(z, k)

lim
|k|→∞

(n1(z, k), n2(z, k)) = (1, 0)

which have the same form as the z-equations with the roles of z and k
reversed.
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Inverse Scattering

For the system

∂kn1(z, k) = s(k)n2(z, k)

(∂k + iz)n2(z, k) = s(k)n1(z, k)

lim
|k|→∞

(n1(z, k), n2(z, k)) = (1, 0)

we have

n2(z, k) ∼
k→∞

e−k(z)
iq(z)

k
+O


|k|−2



or
q(z) = − i

π


ek(z)s(k)n

1(z, k) dk
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Time Evolution of Scattering Data

Suppose that q(t, z) solves the DS II equation with q(t, · ) ∈ S(R2) for each t
(this is true if q(0, · ) ∈ S(R2)). We can the evolution of scattering data as
follows.

(1) Find a law of evolutions for solutions of the Lax equations

(2) Use the large-z asymptotics for the functions m1 and m2 to recover the
scattering data

(3) Use the Lax equations for time evolution together with the asymptotics
of m1 and m2 to find equations of motion for the scattering data
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Time Evolution of Scattering Data (1 of 3)

Step 1: Find the law of evolution for solutions of the Lax equations.

Let
ψ1 = C(k, t)eikzm1, ψ2 = C2(k, t)eikzm2

where, for each t,

(m1(z, k, t), m2(z, k, t)) ∼
|z|→∞

(1, 0)

Subsitute into the second pair of Lax equations and use large-z asymptotics
to recover

C1(k, t) = C2(k, t) = e2it(k2+k
2
).

In the m1, m2 variables, the second pair of Lax equations is now

∂tm1 = 2i(∂2
z + 2ik∂z)m1 + 2i(∂zq)m2 − 2iq∂zm2 + igm1

∂tm2 = −2i∂2
zm2 + 2ik2m2 − 2iε(∂zq)m1 + 2iε(∂z + ik)m1 − igm2
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Time Evolution of Scattering Data (2 of 3)

Step 2: Use the large-z asymptotics of m1 and m2 to recover the scattering
data

If q(t, · ) ∈ S(R2), m1 and m2 should have large-z expansions

m1(z, k, t) ∼
|z|→∞

1 +
a(k, t)

z
+O


|z|−2



m2(z, k, t) ∼
|z|→∞

e−k(z)
b(k, t)

z
+O


|z|−2



where b(k, t) = is(k, t).
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Time Evolution of Scattering Data (3 of 3)

Step 3: Use the Lax equations to recover time evolution of scattering data
Substitute

m1(z, k, t) ∼
|z|→∞

1 +
a(k, t)

z
+O


|z|−2



m2(z, k, t) ∼
|z|→∞

e−k(z)
b(k, t)

z
+O


|z|−2


,

where
b(k, t) = is(k, t),

into

∂tm1 = 2i(∂2
z + 2ik∂z)m1 + 2i(∂zq)m2 − 2iq∂zm2 + igm1

∂tm2 = −2i∂2
zm2 + 2ik2m2 − 2iε(∂zq)m1 + 2iε(∂z + ik)m1 − igm2

to recover
ȧ(k, t) = 0, ḃ(k, t) = 2i(k2 + k

2
)b(k, t)
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Reconstruction Formula
We now have

s(k, t) = e2i(k2+k
2
)s(k, 0)

which gives the following reconstruction formula: if s(k, 0) = (Sq0)(k),

q0 s(k, 0)

q(t) s(k, t)

S

S−1

We will show that the maps S and S−1 = S are well-defined and Lipschitz
continuous
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Continuity of the Scattering Map

Let
H1,1(R2) =


u ∈ L2(R2) : ∇u, |x|u ∈ L2(R2)



with norm
uH1,1(R2) = (1 + |x|)uL2 + ∇uL2

We will show that
S : H1,1(R2) → H1,1(R2)

is one-to-one, onto, and locally Lipschitz. This will imply that the map

(t, q0) → S(e2it((·)2+(·)2)S(q0))

R × H1,1(R) → C(R, H1,1(R))

is a locally Lipschitz continuous map, giving global well-posedness in
H1,1(R).
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Continuity of the Scattering Map
We will show continuity of the scattering map in the following steps:

(1) We will show that the direct scattering problem is uniquely solvable and
that the map

q → (m1 − 1, m2)

H1,1(R2) → L4(R2
z × R2

k)

is locally Lipschitz continuous

(2) We will show that the scattering map

q → s(k) = − i
π



C
ek(z)q(z)m

1(z, k) dz

H1,1(R2) → H1,1(R2)

is Lipschitz continuous

Noting that the map s(k) → e2it(k2+k
2
)s(k) is continuous on H1,1(R2) the

continuity of q0 → S−1


e2it(( · )2+( · )2)Sq0


will follow
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The Direct Scattering Problem

Recall the problem





∂zm1(z, k) = q(z)m2(z, k)

(∂z + ik)m2(z, k) = q(z)m1(z, k)

(m1(z, k)− 1, m2(z, k)) ∈ L4
z(R

2)

Let
m±(z, k) = m1(z, k)± e−k(z)m2(z, k)

Then 
∂zm±(z, k) = ±e−k(z)q(z)m±(z, k)

m±(z, k)− 1 ∈ L4
z(R

2)

We will show that solutions exist and are unique.
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Uniqueness of Solutions

Recall 
∂zm±(z, k) = ±e−k(z)q(z)m±(z, k)

m±(z, k)− 1 ∈ L4
z(R

2)

Theorem (Vekua)
Suppose a ∈ L2(R2), u ∈ Lp(R2) for some p > 2, and ∂zu = au in distribution
sense. Then u ≡ 0.

Proof.
Let m be a difference of two solutions and apply Vekua’s Theorem to the
equation

∂zm = ±e−kq(z)m, m ∈ L4(R2)
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Existence of Solutions

Focus on m+. Rewrite


∂zm+(z, k) = e−k(z)q(z)m+(z, k)

m+(z, k)− 1 ∈ L4
z(R

2)

as an integral equation for w = m+ − 1 ∈ L4
z(R

2):


w − Tw = ∂−1
z (e−kq)

T f := ∂−1
z (e−kq f )

where

(∂−1
z f )(z) =

1
π



C

f (w)

z − w
dw

is the Cauchy integral operator.
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Properties of the Cauchy Integral Operator

(∂−1
z f )(z) =

1
π



C

f (w)

z − w
dw

(1) If p ∈ (1, 2) and p∗ satisfies
1
p∗

=
1
p
− 1

2
, then

∂−1
z f


Lp∗

≲ p  f Lp

(2) For 1 < p < 2 < r < ∞,
∂−1

z f


L∞
≲ p,r  f Lp∩Lr .

(3) For p ∈ (2, ∞) and 1
p + 1

p′ = 1, ∂−1
z f is Hölder continuous of order

1 − 2/p. Moreover, if f ∈ Lp ∩ Lp′ then

lim
|z|→∞

(∂−1
z f )(z) = 0
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Existence of Solutions

Recall w = m+ − 1, q ∈ H1,1(R2), and


w − Tw = ∂−1
z (e−kq)

T f := ∂−1
z (e−kq f )

Recall ∂−1
z : L

4
3 (R2) → L4(R2)

As H1,1 ⊂ L4/3, we have ∂−1
z (e−kq) ∈ L4(R2).

Let u = e−kq and let

(S f ) = ∂−1
z (u f ), u ∈ L2(R2), f ∈ L4(R2).

Then S : L4(R2) → L4(R2) with

SL4→L4 ≲ uL2

So the integral equation makes sense on L4(R2).
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Existence of Solutions

w − Sw = g where S(w) = ∂−1
z (uw), g = ∂−1

z (u)

We claim:

(1) S is compact, as follows from the Kolmogorov-Riesz Theorem

(2) ker(I − S) = {0}

To prove (1), show that S maps the unit ball in L4(R2) into a compact set.

To prove (2), suppose that S f = f . Then

∂z f = e−kq f

Apply Vekua’s Theorem to conclude that f ≡ 0.

It now follow from the Fredholm alternative that the integral equation
w − Sw = g is uniquely solvable.
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Bounds and Continuity
Large-k bounds on the resolvent: Integrate by parts to compute

∂−1
z (e−k f )(z) =

1
πik


−e−k(z) f (z) +

 e−k(w)(∂z f )(w)

z − w
dw



and deduce

(T f )(z) =
1

πik


−e−k(z)q(z) f (z) +

 e−k(w)∂z(q f )(w)

z − w
dw



so that
T f L4 ≲

1
|k|

q f


L4
+

∂z(q f )


L4/3



and by iteration
T2 f


L4

≲ 1
|k| (qT f L4 + ∂z(qT f )L4/3 )

≲ 1
|k|


qL8 T f L8 + ∂zqL2 T f L4 + q2

L4  f L4


.

Conclude that T2


L4→L4
≲ 1

|k| q2
H1,1
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Bounds and Continuity

Lemma
Fix R > 0. There is an N = N(R) so that for all k ∈ C with |k| ≥ N,
q ∈ H1,1(R2), qH1,1 < R,

(I − T)−1


L4→L4
< 2

Proof.
Use the bound T2


L4→L4

≲ 1
|k| q2

H1,1

and the identity
(I − T)−1 = (I − T2)−1(I + T)

To obtain bounded invertibility for |k| < N, use a compactness argument:
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Bounds and Continuity
Lemma
Suppose B is a bounded subset of H1,1(C)× C. Then

sup
(k,q)∈B

(I − T)−1


L4→L4
< ∞

Moreover, the map
q → (I − T(q, k))−1

is Lipschitz from H1,1(R2) to B(L4).

Proof.
First, the map L2(R2)× C ∋ (q, k) → (I − T(q, k))−1 ∈ B(L4) is continuous.

Second, the set B is precompact in L2(R2)× C, so its image under this map is
a bounded set.

Finally, Lipschitz continuity follows from boundedness and

R(k, q1)− R(k, q2) = R(k, q1)(T(k, q1)− T(k, q2))R(k, q2)

where R(k, q) = (I − T(k, q))−1.
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Summary
Recall that

m±(z, k) = m1(z, k)± e−k(z)m2(z, k)

We set w = m+ − 1, q ∈ H1,1(R2), and


w − Tw = ∂−1
z (e−kq)

T f := ∂−1
z (e−kq f )

We have now shown that these equations (and their analogues for m−) are
uniquely solvable and that the maps

H1,1(C) ∋ q → m±(z, k)− 1 ∈ L4
z(C)

are Lipschitz continuous.

We now have (almost all) the necessary tools to study continuity of the direct
scattering map

H1,1(C) ∋ q → s(k) = − i
π



C
ek(z)q(z)m

1(z, k) dz

since m1(z, k) = 1
2 (m

+(z, k) + m−(z, k))
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Mixed Lp Estimates

To study the scattering map

H1,1(C) ∋ q → s(k) = − i
π



C
ek(z)q(z)m

1(z, k) dz

we need mixed Lp estimates on m1(z, k)− 1. We need a key estimate from
Nachman, Regev, and Tataru’s paper.

Lemma Suppose that p ∈ (1, 2] and f ∈ Lp(R2). The estimate




∂−1
z f


(x)

 ≲ (M f (x))
1
2


M pf (0)

 1
2

Here M f is the Hardy-Littlewood Maximal Function

(M f )(x) = sup
x∈B

1
m(B)



B
| f (y)| dy.

Recall that M : Lp(Rn) → Lp(Rn) for 1 < p < ∞.
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Mixed Lp Estimates
We’ll usually use this estimate in the form

∂−1
z (e−k f )(x)

 ≲ (M f (x))
1
2


M pf (k)

 1
2

Lemma Suppose that q ∈ H1,1(C) and that (Mpq)(k) is finite. Then
m1( · , k)− 1


L4
+

m2( · , k)


L4
≤ C(qH1,1 )(Mpq)(k)

1
2

Moreover, the maps q → m1 − 1 and q → m2 are locally Lipschitz maps from
H1,1(C) to L4(R2

z × R2
k).

Proof: It suffices to show that w = m± − 1 obeys the estimate

wL4 ≤ C(qH1,1 )(Mpq(k))
1
2

As w = (I − T)−1(∂z(ekq)) we have

wL4 ≲
(I − T)−1


L4→L4

∂−1
z (e−kq)


L4

≲ C(qH1,1 ) q
1
2
L2 (Mpq(k))

1
2
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Mixed Lp Estimates

Lemma Suppose that q ∈ H1,1(C) and that (Mpq)(k) is finite. Then
m1( · , k)− 1


L4
+

m2( · , k)


L4
≤ C(qH1,1 )(Mpq)(k)

1
2

Moreover, the maps q → m1 − 1 and q → m2 are locally Lipschitz maps from
H1,1(C) to L4(R2

z × R2
k).

Proof (continued): As a consequence of the estimate

wL4 ≲ C(qH1,1 ) q
1
2
L2 (Mpq(k))

1
2

we obtain
m1 − 1


L4(R2

z×R2
k)
+

m2


L4(R2
z×R2

k)
≲ C(qH1,1 ) q

1
2
L2

Lipschitz continuity of (m1 − 1, m2) can be recovered from Lipschitz
continuity of the resolvent (I − T)−1 and the solution formula.
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Continuity of the Scattering Map
With estimates on the scattering solutions in hand, we’ll prove continuity of
the scattering map

q → s(k) = − i
π



C
ek(z)q(z)m

1(z, k) dz

in the following steps:

(1) S is locally bounded and Lipschitz continuous from H1,1(R2) to L2(R2)

(2) For any p ∈ [2, ∞), S is locally bounded and Lipschitz continuous from
H1,1(R2) to Lp(R2)

(3) S is locally bounded and Lipschitz continuous from H1,1(R2) to H1(R2)

(4) S is locally bounded and Lipschitz continuous from H1,1(R2) to L2,1(R2)

As we’ll see, each step provided information needed for the next step.
Remember that it suffices to study

I(k) = − i
π



C
ek(z)q(z)(m

1(z, k)− 1) dz
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S : H1,1(R2) → L2(R2) (1 of 3)
We need to show that

I(k) = − i
π


ek(z)q(z)(m

1(z, k)− 1) dz

defines an L2 function of k, locally Lipschitz as a function of q. From

m1(z, k)− 1 = ∂−1
z (q( · )m2( · , k))(z)

we integrate by parts to get

I(k) = − i
π

 
∂−1

z (ekq)(z)


q(z)m2(z, k) dz

From the estimate
∂−1

z (e−k f )(x)
 ≲ (M f (x))

1
2


M pf (k)

 1
2

we get

|I(k)| ≲ C(qH1,1 )

Mpq(k)

 1
2


(Mq(z))
1
2 |q(z)||m2(z, k)| dz
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S : H1,1(R2) → L2(R2) (2 of 3)

Recall

I(k) = − i
π


ek(z)q(z)(m

1(z, k)− 1) dz

We estimate

|I(k)| ≲ C(qH1,1 )

Mpq(k)

 1
2


(Mq(z))
1
2 |q(z)||m2(z, k)| dz

≲ C(qH1,1 )

Mpq(k)

 1
2 q

3
2
L2

m2( · , k)


L4

Using the estimate
m2


L4(R2

z×R2
k)
≲ C(qH1,1 ) q

1
2
L2

we conclude that
IL2 ≲ C(qH1,1 ) q2

L2 .
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S : H1,1(R2) → L2(R2) (3 of 3)

To prove Lipschitz continuity, recall

I(k) = − i
π


ek(z)q(z)(m

1(z, k)− 1) dz.

Hence

I(k; q1)− I(k; q2)

=
i
π

 
q1(z)∂−1

z (ekq1)(z)− q2(z)∂−1
z (ekq2)(z)


m2(z, k; q1) dz

+
i
π

 
q2(z)∂−1

z (ekq2)
 

m2(z, k; q1)− m2(z, k; q2)


dz

One can show
• q → q∂−1

z (ekq) is Lipschitz continuous from L2(R2) to L4(R2
k , L

4
3 (R2

z))

• q → m2(z, k; q) is Lipschitz continuous from H1,1(R2) to L4(R2
z × R2

k)

which implies the required Lipschitz continuity.
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S : H1,1(R2) → Lp(R2), p > 2 (1 of 1)

Recall
I(k) = − i

π


ek(z)q(z)(m

1(z, k)− 1) dz.

and estimate

|I(k)| ≲
 ∂−1

z (ekq)(z)

m2(z, k)

 dz

≲ C(qH1,1 )
 

(Mpq)(k)
1
2 (Mq)(z)

1
2

2
dz

≲ C(qH1,1 ) q2
L2


Mpq


(k)

Since M : Lp → Lp for p ∈ (1, ∞), the result follows from the
Hausdorff-Young inequality.
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S : H1,1(R2) → H1(R2) (1 of 1)
It suffices to estimate

∂ks


L2 since the Beurling transform

(S f )(z) = − 1
π

lim
ε↓0



|z−w|>ε

f (w)

(z − w)2 dw, f ∈ C∞
0 (R2)

extends to a bounded operator on Lp(R2), p ∈ (1, ∞), with

S(∂z f ) = ∂z f

We compute, for q ∈ S(R2),

∂ks(k) = I1 + I2

I1 =
1
π


ek(z)zq(z)m1(z, k) dz I2 =

i
π

s(k)


q(z)m2(z, k) dz.

Use the facts that:
• In I1, zq(z) ∈ L2(R2)

• In I2, s ∈ L4(R2
k) and q →


q(z)m2(z, k) dz defines a continuous map

from H1,1(R2) to L4(R2
k).
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S : H1,1(R2) → L2,1(R2) (1 of 2)
Using ∂zek = ikek and integrating by parts, we see that

kI(k) = − 1
π


ek(z)∂z


q(z)(m1(z, k)− 1)


dz =

1
π
(I1 + I2)

where

I1 = −


ek(z)(∂zq)(z)(m1(z, k)− 1) dz

I2 = −


ek(z)|q(z)|2m2(z, k) dz

In I1, use the facts that ∂zq ∈ L2(R2) and m1(z, k)− 1 = ∂−1
z (q(z)m2(z, k)).

In I2, use the equations for m2 to write

I2 = −


|q(z)|2∂−1
z (ek( · )m1( · , k))(z) dz = −(I21 + I22),

I21 =


|q(z)|2∂−1
z (ekq)(z) dz

I22 =


|q(z)|2∂−1
z


ekq( · )(m1( · , k)− 1))(z)


dz
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S : H1,1(R2) → L2,1(R2) (2 of 2)

I21 =


|q(z)|2∂−1
z (ekq)(z) dz

I22 =


|q(z)|2∂−1
z


ekq( · )(m1( · , k)− 1))(z)


dz

Via “integration by parts” we have

I21 = −


ek(z)q(z)∂
−1
z (|q|2)(z) dz

which exhibits I21 as the Fourier transform of an L2 function since
|q|2 ∈ L

4
3 (R2).

On the other hand,

I22 = −


ek(z)q(z)

∂−1

z (|q( · )|2)

(z)(m1(z, k)− 1) dz

Since q∂−1
z (|q|2) is an L2 function, I22 is also an L2 function of k.
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S−1 = S (1 of 2)

We will show that, for q ∈ S(R2), the solutions (m1, m2) of

∂zm1(z, k) = q(z)m2(z, k)

(∂z + ik)m2(z, k) = q(z)m1(z, k)

m1(z, k)− 1, m2(z, k) = O

|z|−1



also solve

∂km1(z, k) = e−ks(k)m2(z, k)

∂km2(z, k) = e−ks(k)m1(z, k)

m1(z, k)− 1, m2(z, k) = O

|k|−1



where
s(k) = − i

π



R2
ek(z)q(z)m

1(z, k) dz.
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S = S−1 (2 of 2)

∂zm1(z, k) = q(z)m2(z, k)

(∂z + ik)m2(z, k) = q(z)m1(z, k)

m1(z, k)− 1, m2(z, k) = O

|z|−1



Let v1 = ∂km1, v2 = ∂km2. Differentiate the equations with respect to k to find

∂zv1 = qv2

(∂z + ik)v2 = qv1

v1 = O

|z|−1


, v2 = e−ks(k) +O


|z|−1


.

Set w1(z, k) = ∂km1 − eksm2, w2 = ∂km2 − e−ksm1 so

∂zw1 = qw2

(∂z + ik)w2 = qw1

where w1, w2 = O

|z|−1, so w1 = w2 = 0.
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Summary

We have now sketched the proof that S : H1,1(R2) → H1,1(R2) with local
Lipschitz continuity.

We have shown that S = S−1 on S(R2), which we can extend by density to
H1,1(R2).

This now proves that

q0 → S−1


e2it(( · )2+( · )2)Sq0



is a continuous map from H1,1(R2) to C(R, H1,1(R2)) with Lipschitz
continuity in q0.


