Overview
o]

DS II: Asymptotics DS II: GWP and Scattering KPI: Asymptotics
000000 000000000 000000000000 0000000

Inverse Scattering in Two Dimensions:
Scattering Theory and Asymptotics

Peter Perry
University of Kentucky

March 16, 2025



1)

@)

®)

4)

©)

(6)

References

Oleg Kiselev, Asymptotics of solutions of multidimensional integrable
systems and their perturbations. Sovrem. Mat. Fundam. Napravi 11 (2004),
3-149.

Peter Perry, Global well-posedness and asymptotics for the defocussing
Davey-Stewartson II equation in H"!(C). J. Spectral Theory 6 (2016), no. 3,
429-481.

S. V. Manakov, P. M. Santini, and L. A. Takhtajan. Asymptotic behavior of
solutions of the Kadomtsev-Pyatviashvili equation (two-dimensional
Korteweg-de Vries equation). Phys. Lett. A 75 (1979/80), no. 6, 451-454.

Adrian Nachman, Idan Regev, Daniel Tataru. A nonlinear Plancherel
theorem with applications to global well-posedness for the
Davey-Stewartson equation and to the inverse boundary problem of
Calderon. Invent. Math 220 (2020), 395-451.

Xin Zhou. Inverse scattering transform for the time-dependent
Schrodinger equation with applications to the KP I equation. Comm.
Math. Phys. 128 (1990), no. 3, 551-564.

Samir Donmazov, Jiaqi Liu, and Peter Perry. Large-time asymptotics for
the Kadomtsev-Petviashvili I Equation. ArXiV 2409.14480


https://arxiv.org/abs/2409.14480

Overview

Overview

In this lecture, we’ll consider nonlinear scattering and asymptotics for two
completely integrable dispersive PDE'’s:

(1) The DS II equation, considered in Lecture 3:
iqe +2(97 +02)q + (g +8)q =
0zg +4ed:(|q]*) =
9(0,x,y) = qo(x y)
where € = 1 (resp. e = —1) for the defocussing (resp. focussing) equation
(2) The Kadomtsev-Petviashvili equation,
(tf + tyxx + 6uLy) . = 3Auyy
u(0,x,y) = uo(x,y)

where A =1 (resp. A = —1) is the KPI (resp. KP II) equation.

We will discuss nonlinear scattering (the existence of scattering asymptotics
for the solutions of these PDE'’s) and long-time asymptotics
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DS II Asymptotics: Pointwise Behavior
Theorem (Perry) Suppose that go € HV1(R?) N L1(R?) and (Sqo)(0) = 0. Then
q(t,z) = v(t,z) +o(t™1)

where v(t, z) solves the problem

{iatv +2(02+32)v =0,
0(0,2) = F4 (S(q0))

The proof depends on a careful study of the @ problem

lim (vq,12) = (1,0)
|k|—00

where rg = S(qo) and S(z,k,t) = (kz — kz) /it + 4 Re(k?).
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DS II Asymptotics: Pointwise Behavior

If g0 € HY'(R?) N L' (IR?), then rq € HY1(R?) N CY(IR?). The reconstruction
formula is

q(tz) = % /C eSEED o (k)vy (z,k,t) dA(K),  S(z,k t) = (kz —kz)/it + 4Re(k?)

and

and v(t,z) is exactly
v(t,z) = %/eits(z’k’”ro(k) dA(k)

so the key issue is large-t asymptotic behavior of v4 (z, k, t).
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DS II Asymtotics: Pointwise Behavior

q(t,z) —o(t,z) = }T / SN o (k) (11 (2, k, t) — 1) dA(K).

To study v; — 1, return to the integral equation for v;. Let

Mip — %Pk (efits(z,-,t)w> , (Pef)(k / k—¢ dA ©

For rg € H"!(R?), the operator M is a compact operator on Lf(IRZ) for any
p € (2,00),and (I — M?)~!is bounded on L?(R?). We have

v =1+ (I-M?>)"M*1
so the crucial estimates are on time-decay of M?1. The phase function
_ 2 _ 122
S(z,k,t) =4Re((k—kc)*) +So, So = 4Re(z /%)

has a single critical point at k. = iz/4t.
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DS II Asymptotics: Pointwise Behavior

My = %Pk (e*ifs(z"'t)@) . S(zkt) = 4Re(k — kc)? + S

v —1=(1-M>)"M*1
Let
7= lrolla + [[7ollco
Using stationary phase methods, we show that for any p > 2 and a suitable
cutoff function )y with support in an O (t’ 411) neighborhood of k:

MG, Spyt™ 470 M =201, Sp vt
o, 5y -t
P

~1/4
Ml ppspr Spy IMxl o e Sp vt /

L P

LP—Lr
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DS II Asymptotics: Pointwise Behavior

a(6,2) — o(t,2) = — [ ESER ) (2.6, 1) — 1) dAK)
v —1=(1-M>)"M*1
Using the operator norm estimates on M and the estimates on M*1 we can

show that for rg € H1(R?) N CO(IR?),

sup
zeC

1 7 .
u(z,t) —o(z,t) — p /e’tsro(le) dk’ Sor g1=1p

The o(t~!) estimate on the remaining term is obtained by a stationary phase
analysis of the four integrals

b= [ e"rM[1- M) dAK)
L= [ ¢"Sr MxM(1 - 2)] dA®K)
= [ et M[(1=)M(1 = x)] dA(K)

i = [ ¢ M[xM(x)] dA®K)
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DS II Asymptotics: Pointwise Behavior

Estimates on defocussing DS II equations were first obtained by Kiselev
(1997). On the one hand, Kiselev’s assumptions were more restrictive than
ours, and on the other hand he considers both the defocussing case and the
focussing case, making a small data assumption. Much of the analysis here is
inspired by his work.

It is interesting to note that the DS II asymptotics show rno logarithmic phase
shift. Instead, they directly mirror the asymptotic behavior of solutions to the
linear problem

90 +2(% +32)g =0
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DS II: Plancherel Theorem for S

Nachman, Regev and Tataru (2020) proved a pathbreaking result on the DS II
equation including nonlinear scattering. All are consequences of the
following fundamental theorem on the scattering transform.

Theorem (Nachman, Regev, Tataru) The nonlinear scattering transform S : q — s
is a C! diffeomorphism S : L?(IR?) — L*(R?) satisfying:

@ 115allz2 = llgllz2

(i) (S| < Cllgllr2) (Ma) (k) for a.e. k
(i) g — Sq is uniformly bi-Lipschitz

S Cllgllz2)

L2—]2

v) S1=8

. oS
() H%

(vi) S isasymplectomorphism, i.e., wq 5—5‘ q1, (S—S(qz)
oq q oq

42> = wz(q1,92)
q

where

wl(ql,qz) = —Im/qlqjdz, (Uz(tl, tz) = —Im/tlgdk
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DS II: Well-Posedness and Scattering

Let U(t) be the solution operator for the linear DS II equation. As a
consequence of their theorem and the solution formula

gty =871 <e4itRe(k2>S qo) , Nachman, Regev, and Tataru proved:

Theorem
The defocussing DS 11 equation is globally well-posed on L?(IR?) and solutions
scatter. More precisely, the solution satisfies

(i) q(t,z) € C(R,L2(C)) N L} (R x C)
() g2 = 190} 12 forall t € Rand [lg]|s < C(ll4oll2)

(i) |q(t,z)| < C(||q0l;2) Mg (t, z) where g™ solves the linear DS II equation
with initial data Sqq

(V) llq1(t,-) = ga(t,)ll 2 < C(R) [|91(0, ) = 2(0,-) |2 provided
1910, )l 2 /192 0)[[ 2 < R.
(v) Forqo € L*>(C) thereare q—,q+ € L*(C) so that

dim gt ) = U()g-()llz = lim_llg(t,) = U+ ()]2 =0

t—-+too
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Ideas of the Proof - Fractional Integrals
Let

(Mf) () = sup s |17 dy

r>0

be the Hardy-Littlewood maximal function for functions f € L} (R"), and
recall M : LP — LP for1 < p < oo. (thinka =1,n =2

Theorem For0 < a <n, f € LP(R"),1<p <2
|(=8) 73 £(3)] < cna (A"7*MF(0) + A" M (x >)
|(-8)75 ()| < ena (MFO) T (MF(x))'F

Corollary Forq € L?(C):
2 [0 () (®)] £ (MGK)? (Ma(x))?

—1 1 ~ 1
b [37 k)|, < Nl (Md())?




Overview DS II: Asymptotics DS II: GWP and Scattering KPI: Asymptotics
o 000000 000800000 0000000000000000000

Ideas of the Proof - YDO Estimates

Theorem Let 0 < & < n and suppose a(x, ) satisfies

i) la(x, &) d& dx < oo and
R"xR"

@ [0t o e L*

Then, the pseudodzﬁerentzal operator

0, D)) = e [ al Df@) de
is bounded on L? with

la(, D)2 < || (=80)Fa(x,)

and

N

la(x, D) f(2)] < can(Mf(x))7

(=8g)2a(x, )|z 12
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Ideas of the Proof: Scattering Solutions

To analyze the direct scattering transform
__i preem
Sq() = —= [ ec@az)m’ (2 k) dz

we need fine estimates on m!. Recall that

m! = %(m+ +m_)
m* = e_y (i —m-)
where 3
S 1) = e (75— 1) £ e_yq

This naturally focuses attention on the inhomogeneous problem
U +e_rqii = e_f
or equivalently the operator L I where

Lqu = ou + gt
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Ideas of the Proof: Concentration Compactness

Recall the homogeneous Sobolev spaces H : (R?) C L*(R?) and the dual
space H™ 2 (R?) > L3 (R?). If

Lgu = ou + qii,
then . _
L'f=(I+3 (q:)7'9 f
The goal is to show that
HLq_lHHf%—)H% < Cllall2)-

Step 1: For g € L?(IR?), L, : H? — H~2 is invertible with

|La'f| s < c@lfl,

Step 2: ¢ — L, ! is a smooth map and g — C(q) is locally Lipschitz
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Ideas of the Proof: Concentration Compactness
Recall Lyu = ou + qu, The goal is to show that

|3 < CClgll).

Step 3: If

C(R) = sup{C(q) : [l9ll= < R},
then C(R) < oo for R small and C(R) is nondecreasing and continuous.

Step 4: Frame a proof-by-contradiction argument to show that C(R) is finite
for all R.

If not, choose Ry minimal so that C(Rg) = co. By continuity there is a
sequence {q, } with ||x||;2 ,/* Ro so that

1 —> 00

HL L
H 2—H2

-1
qn
If a subsequence of {g,} converged in L2 we could obtain a contradiction by

-1
1
H 2—

17é°°

-1
I3, a7 HLq HH*%—>H1
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Ideas of the Proof: Concentration Compactness

Symmetry under translation and scaling is an obstruction to compactness: If
5(A y)q(x) = Aq(A(x —y)), then

C(q) = C(S(A,y)q)-

So the best we can expect is compactness modulo the action of these
symmetries

1
Step 5: Expand the pertubative theory to Boos's(]Rz) D L2(IR?) (Sobolev
embedding) — note the bilinear estimate

Il -3 % all sl
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Ideas of the Proof: Concentration Compactness

Step 6: Prove that any bounded subsequence {g,} in L? has a subsequence
admitting the following “profile decomposition” for any I € IN:

1
g =Y S(Ak,v8)d" +4,
k=1

where the functions qj (profiles) are all in L2 for all j € N, and the remainders
g, are uniformly bounded in L? and satisfy

13 = 0

)
I -3

lim lim sup
=0 0

and (A, y}') is a sequence in R* x R? with separation of profiles:

AL+£

— J 5k Jo_ kA —
w2k T T Ap = Ay, im |y — yu|An =0

(cf. Gérard 1998). This decomposition allows a perturbative analysis of L, to
71‘ 1 1 < o0
H 2—H2

show that lim;; o HL%
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The KP Equation

The KP equation
oiu + E)iu + 6ud u = 73028;18511

is a completely integrable, dispersive PDE. The case ¢ = i is the KP I
equation, and the case o = 1 is the KP II equation.

The KP equation is the compatibility condition for the system
(09y + 03 +u)p =0, @
(3¢ + 403 + 6udy + 3(ux — 095 Dyu) )y = 0. )
(Dryuma 1974), or, in the Lax representation
L =00y + Oxx
A =433 + 6udy + 3(uy — 00y 'yu)

where L = [A, L] gives the KP equation. As usual, equation (1) defines a
spectral problem and scattering data, while equation (2) determines the
time-evolution of scattering data under the KP flow.



Overview
o

otu + E)iu + 6udyu = 73028;18514
(09y + 2 +u)yp =0,
(3¢ + 493 + 6udy + 3(uy — 00y 'dyu))p = 0.

For KP I (o =i):
® The spectral problem is a time-dependent Schrédinger equation

® The scattering data are transmission coefficients T* (k, 1) with
discontinuity at k = |

® The inverse problem is a nonlocal Riemann-Hilbert problem

ForKPII (o = 1):
® The spectral problem is a heat equation

® The scattering data is a function F : C — C with discontinuity at
Rek =0

® The inverse problem is a F) problem

DS II: GWP and Scattering KPI: Asymptotics
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Well-Posedness Results

It is known (Molinet, Saut, Tzvetkov, Math. Ann. 2004) that for initial data in
the space Z with norm

8;1uy

ot

a;2uw‘

ol = Dl + ol =+ [y + [ 2 + | B

there exists a unique global solution with u, 1y, uxy € L®(RT, Lz(]Rz)) and
u € L®(R* x R?) and with conserved mass and energy:

1 1 1
— 2 _ 2 -1 2 3
M) = [ P By =g [ [ et [ oo
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Large-Time Asymptotics: Linear KP Equation

We seek to determine large-time asymptotics of solutions to the KP 1
equation with small data. As a “warm-up” we consider Cauchy problem for
the linear KP equation

{atv + 030 = 319, 'oju
0(0,x,y) = vo(x,y)

where A =1 for KPI, A = —1 for KP II. This equation has a solution via
Fourier analysis:

o(t,x,y) = % /eit(pé+qf7+(p3—3w’lqz))UAO(F,,q) dpdq

where ¢ = x/t, 5 =y/t.
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Large-Time Asymptotics: Linear KP Equations

Recall 1,
o(txy) = o [P SWTG, (p,g) dp dg

where ¢ = x/t, 5 =y/t.
For the linear KP I equation, if we set p = I — k, 4 = k? — I?, we conclude
o(t,x,y) = % /eits(kfl?éxﬂ)z?o(l —k,—(I> —=K?)) |l — k| dkdI

where
S(k, ;& n) = (1—k)E— (I =Ky +4(P - ).
The phase function S has four nondegenerate critical points at

(k) = <’7 + 7“72_125,1% + \/’72_126,>

12 12 12

provided
n? —12& >0
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Large-Time Asymptotics: Linear KP Equations

Recall 1
o(txy) = - [ I DG, g) dpdg

where ¢ = x/t, 5 =y/t.

For the linear KP II equation, if we set p = —(k + k), g = i(k? — EZ), then
o(t,x,y) = % / SR (ke + K) Gy (— (k + K, i(k2 — k7)) dk A dk

where 3 3 S 5
S(k kg, n) = —(k+k)g —i(k® =k )y +4( +k)
The phase function has nondegenerate critical points at

o _ (i —(*+12%) iy —(* +12%)
Uk k) = (ui 12 AT Es 12 )

provided
7?4128 <0
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For the linear KP equations, we expect the following pointwise asymptotics:
® Scattering (O(t~1) behavior) if 72 — 12 > 0 (Linear KP I)
® Scattering (O(t~!) behavior) if 2 + 12¢ < 0 (Linear KP II)

Linear KP I Linear KP II
Ui n
-1 -1
o) n?—120=0 4125 =0 o)
o(t™1) o(t™1)
4

These asymptotics show what to expect for the nonlinear equations.
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Asymptotics: Previous Work by IST Methods

Kiselev (2004): large-time asymptotics for KP II for small initial data
(i) For — (2 +128)t3 > 1,
-1 T (1N g 1
ultxy) o —4 (2”r 12) +ecto(t™)
(ii) For (2 +128)t5 > 1,
u(t,x,y) =o(t™1)
(iii) For [128 +7%| < 1,
(o]
u(t,x, y) ~ 81t Lf(in/12)vr (/0 VP1cos(8p3 —zp1) dp

+ /0 VP1sin(8p — zpy) dm)

2
Here f is the scattering data, r = \/— (72 4+ 12¢) and z = 8t3 (;17—2 + C)
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Asymptotics: Previous Work by IST Methods

Manakov, Santini, and Takhtajan (1980) computed large-time asymptotics for
KP I with small initial data in the region 52 — 12¢ > 0 (scattering region)
using a stationary phase arguments. They obtained

u(t,x,y) *%‘Pg(@,’?) [Ki,H(C, &, n)eiteemn +c.c.}

t~>ioo

where s
9(E1) = 15 (17 ~120)°

and Kj_E1 4118 obtained from the solution of the Gelfand-Levitan-Marchenko
equation

X
K(x,x',y,t) + F(x,x',y,t) +/ K(x,x",y, ) F(x",x,y,t)dx" =0
where, for scattering data f(k, k'),

/ _ Ly 1Y (k=K x' = (K2 =K2)y+4(K —k°) ) / /
F(x,x 1) = 5 //f(k,k)e F(k k') dk dk
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Take-Aways

From these results, we see:

(1) There are three space-time regions where the KP equations have different
asymptotics: a scattering region, a transition region, and a no-scattering
region

(2) These regions are exactly the regions where the phase function S for the
linear problem has nondegenerate critical points, (almost) degenerate
critical points, and no critical points

A close examination of the proofs shows that it is critically important to
understand the scattering solutions as determined by the inverse problem:
the respective reconstruction formulas are

u(t,x,y) = %% ( /mz SRS £ (k D u(l, %y, 1) dkdl) KP1
u(t,x,y) = %% (/C SN E(k)g(k, x,y, t)dk A dE) KP1I

where y satisfies a nonlocal Riemann-Hilbert problem and ¢ satisfies a @
problem, each with time-evolved scattering data.
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Long-Time Asymptotics for the KP I Equation

Denote 1
ﬁwywzgggjéﬂ“wnyww

and

%
fllir = ( [, 1Pty )

Donmazov, Liu, and Perry proved:

Theorem Suppose that 1y € Zy, with ||iy||;1 < V27w and ||Tp]| 2-1 small. Let
u(t, x,y) be the solution to KPI with initial data ug, and let a = 12¢ — 772. The
following estimates hold:

(i) Fora > ¢ > 0 (no scattering region),
u(t,x,y) =o(t71).
(ii) Fora < —c < 0 (scattering region),
u(t,x,y) =0 (t%) .
(ili) For |a| < c (transition region),

u(t,x,y) =0 (t_2/3> .
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Ideas of the Proof

The reconstruction formula is
u(t,x,y) = + aax ( / ¢itSo (kL) f(k,l)yl(x,l;y,t)dkdl>

where

Stk o) = (1= K)E — (PR + 40P =), flk1) =

and ],tl solves the non-local Riemann Hilbert Problem
yl =14 (C+T +C-TH)!,
(Tif / ltS kl;a) Ti(k l)f(l)dl

where Cx : L2(R,dk) — L?(R, dk) are Cauchy projectors

KPI: Asymptotics
0000000000080000000

T* (k1) + T~ (k1)

To obtain asymptotics, we will combine stationary phase estimates with

estimates on ! for large times
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Ideas of the Proof

u(t,x,y) = ui(t,x,y) +ux(t, x,y)
up (t,x,y) = % / e!*SokLEm (1 — k) £ (k, 1) dl dk

U (t,%,) = / eSOKEEN (k1) F(k, 1) (4! (x, Ly, £) — 1) dl dk
+/ eS0T £ (k. z)a” (1, %y, t) dl dk

The uq term is a “local” term, the u, term is a “nonlocal” terms.

In the local term, we can “almost” use stationary phase and exploit the
behavior of the phase function in the three regions.

In the nonlocal term, note that
eitSo(klig ) — p—it(kE—K2n+4k) ,it(1E—1*+41%)

We will obtain L? estimates for 4/ — 1 and du!/dx (I variable) and exploit
stationary phase (k variable).
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Ideas of the Proof - Local Term
We can rewrite
(%) = % / SO (1 kY (T (K, 1) + T (k, 1)) dl dk
where
S(k,L;a) =12((1 —k)a+ = (P —K°)).
Recall the Airy function
. _ i i(sx+s%/3)
Ai(x) = 7or /e ds
and note that

[ttt/ gy VT ((12t)% (a—i))

\/2_71 (12¢)5

and the estimate ;

NI

|Ai(z)] S (1+[z])”
holds.



Overview DS II: Asymptotics DS I1: GWP and Scattering KPI: Asymptotics
o] 000000 000000000 0000000000000 0e0000

Ideas of the Proof —LLocal Term

(%) = % / SR i1 — k) (T+ (k1) + T~ (k1)) di dk

where
S(k,I;a) = 12(al — 13/3) — 12(ak — k3/3).

(i) Fora > 0, we can use integration by parts to obtain o(t 1) decay
(ii) For |a| < 1, we can use Airy asymptotics to obtain O <t’ %) decay

(iii) For a < 0, we can Fourier transform in one of the two variables and the
cubic phase transforms to an Airy function with O (t_ %) decay. We can

use similar arguments for the other integration involving partial
Airy-type integrals of the form

/°° Q120 (al+/3) g
k
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Ideas of the Proof - Nonlocal Term

(b x,y) = / S0 (ke — 1Y £ (k, 1) (4! (x, Ly, £) — 1) dl dk
+ / ¢itSokbit ) f(k,l)%—lil(l,x; y, 1) dl dk
Recall ! = 1+ Crpu! where
Crf=CiT f+C_T*f, THf(I) = / GHSOKEEN T (1 1) £(11) dl!
One can show that, for small data ||Cr||;2_,;2 < } so that
W —1=(-Cp)tcr(1)
%—f = (I-Cr) ™" (Caryax) (' = 1) + (I = C1) ' Caryax(1)

To obtain decay of the le norm in time, it suffices to estimate

ICr(MWll2, ICr/ax (V2
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Ideas of the Proof - Nonlocal Term

To obtain decay of the le norm in time, it suffices to estimate
ICr(Wl2/ ICar/ax (1)l 2 where

Crf=CyT f+C.T'f,
Tif(l) _ /eitSU(l,l’;C,;y)T:I:(l,l/)f(l/) ar

0
Since C. are isometries of L2, it is enough to estimate 7+ (1) and gTi (1)

For example, by a change of variables

T+(1) _ /loo eitS(l,l’;u) T+(l, l/)dll

%T+(1) _ /l°° etSUa) i — 1y H(1,1") dl’

We can use Fourier theory again provided we can estimate Fourier
transforms (“almost” Airy functions) of the form

/°° it J2it(al' +(1')3/3) gy
!
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Ideas of the Proof - Nonlocal Term

We obtain the following estimates:

=1, a>56>0
Hyl(xp;y,t)fl‘sz, t_%, la] <6
' t’%, a<—6<0

o
g(xl '/]// t)

~

tl
<L, ol <4
1|tz

Using stationary phase techniques in the integration over k, we can obtain
initial decay of

0o(1), a>é>0,
T3, al <4,
, a<d<0

Nim Wl

t
-
which gives the desired result in the non-scattering, transition, and scattering
regions.
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Remarks

. These are, to our knowledge, the first results on pointwise asymptotics

of u(t, x,y) for KP I

. The estimates we obtain on solutions of yl (1,x;t,y) are far sharper than
previous estimats in the literature

. We are able to get pointwise leading asymptotics for the local term, but
we can’t (yet) get pointwise leading asymptotics for the non-local term

. We obtain asymptotics in the regions not covered by Manakov, Santini,
and Takhtajan and with less regularity assumed on the initial data



