MA 114 Worksheet #22: Parametric Curves

- 1. (a) How is a curve different from a parametrization of the curve?
 - (b) Suppose a curve is parameterized by (x(t), y(t)) and that there is a time t_0 with $x'(t_0) = 0, x''(t_0) > 0$, and $y'(t_0) > 0$. What can you say about the curve near $(x(t_0), y(t_0))$?
 - (c) What parametric equations represent the circle of radius 5 with center (2, 4)?
 - (d) Represent the ellipse $\frac{x^2}{a^2} + \frac{y^2}{c^2} = 1$ with parametric equations.
 - (e) Do the two sets of parametric equations

$$y_1(t) = 5\sin(t), \ x_1(t) = 5\cos(t), \ 0 \le t \le 2\pi$$

and

$$y_2(t) = 5\sin(t), \ x_2(t) = 5\cos(t), \ 0 \le t \le 20\pi$$

represent the same parametric curve? Discuss.

- 2. Consider the curve parametrized by $c(t) = (\sin(t) + \frac{t}{\pi}, (\frac{t}{\pi})^2)$, for $0 \le t \le 2\pi$.
 - (a) Plot the points given by $t = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{3\pi}{2}, 2\pi$.
 - (b) Consider the derivatives of x(t) and y(t) when $t = \frac{\pi}{2}$ and $t = \frac{3\pi}{2}$. What does this tell you about the curve near these points?
 - (c) Use the above information to plot the curve.
- 3. Find a Cartesian equation for the following parametric curves. Sketch the curves to see if you solved them correctly.

(a)
$$x = \sqrt{t}, y = 1 - t$$
.

- (b) x = 3t 5, y = 2t + 1.
- (c) $x = \cos(t), y = \sin(t).$
- 4. Represent each of the following curves as parametric equations traced just once on the indicated interval.

(a)
$$y = x^3$$
 from $x = 0$ to $x = 2$.
(b) $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

- 5. A particle travels from the point (2,3) to (-1,-1) along a straight line over the course of 5 seconds. Write down a set of parametric equations which describe the position of the particle for any time between 0 and 5 seconds.
- 6. For the following parametric curves, find an equation for the tangent to the curve at the specified value of the parameter.

(a)
$$x = e^{\sqrt{t}}, y = t - \ln(t^2)$$
 at $t = 1$.

- MA 114
 - (b) $x = \cos(\theta) + \sin(2\theta), y = \cos(\theta), \text{ at } \theta = \pi/2.$
- 7. For the following parametric curve, find dy/dx.
 - (a) $x = e^{\sqrt{t}}, y = t + e^{-t}.$
 - (b) $x = t^3 12t, y = t^2 1.$
 - (c) $x = 4\cos(t), y = \sin(2t).$
- 8. Find d^2y/dx^2 for the curve $x = 7 + t^2 + e^t$, $y = \cos(t) + \frac{1}{t}$, $0 < t \le \pi$.
- 9. Find the arc length of the following curves.
 - (a) $x = 1 + 3t^2, y = 4 + 2t^3, 0 \le t \le 1.$
 - (b) $x = 4\cos(t), y = 4\sin(t), 0 \le t \le 2\pi$.
 - (c) $x = 3t^2, y = 4t^3, 1 \le t \le 3.$
- 10. Suppose you wrap a string around a circle. If you unwind the string from the circle while holding it taut, the end of the string traces out a curve called the *involute* of the circle. Suppose you have a circle of radius r centered at the origin, with the end of the string all the way wrapped up resting at the point (r, 0). As you unwrap the string, define θ to be the angle formed by the x-axis and the line segment from the center of the circle to the point up to which you have unwrapped the string.
 - (a) Draw a picture and label θ .
 - (b) Show that the parametric equations of the involute are given by $x = r(\cos \theta + \theta \sin \theta)$, $y = r(\sin \theta \theta \cos \theta)$.
 - (c) Find the length of the involute for $0 \le \theta \le 2\pi$.