
1 The fundamental theorems of calculus.

• The fundamental theorems of calculus.

• Evaluating definite integrals.

• The indefinite integral-a new name for anti-derivative.

• Differentiating integrals.

Theorem 1 Suppose f is a continuous function on [a, b].
(FTC I) If g(x) =

∫ x
a f(t) dt, then g′ = f .

(FTC II) If F is an anti-derivative of f , then∫ b

a
f(t) dt = F (b)− F (a).

Example. Compute
d

dx

∫ x

1

1

t
dt.

Compute ∫ 3

0
x3 dx.

Proof. An idea of the proofs. FTC I:
Write

g(x + h)− g(x)

h
=

1

h

∫ x+h

x
f(t) dt.

We will show

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

The reader should write out a similar argument for the limit from the below.
If f is continuous, then f has maximum and minimum values Mh and mh on the

interval [x, x + h]. Using the order property of the integral,

mh ≤
1

h

∫ x+h

x
f(t) dt ≤ Mh.

As h tends to 0, we have limh→0+ Mh = limh→0+ mh = f(x) since f is continuous. It
follows that

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

FTC II:



We know from FTCI that f has one anti-derivative,
∫ x
a f(t) dt. We let

G(x) =
∫ x

a
f(t) dt− F (x)

where F is some anti-derivative as in FTC II. The derivative of G, G′(x) = f(x) −
f(x) = 0 for all x in (a, b). This uses FTC I and the hypothesis that F is an anti-
derivative of f . Since the derivative of G is identically zero, we can conclude that G
is a constant.

If we set x = a in the definition of G, we find G(a) = −F (a) so that we can
conclude the constant is −F (a). If we set x = b in the definition of G, then we
conclud

−F (a) =
∫ b

a
f(t) dt− F (b).

Adding F (b) to both sides give the conclusion of FTC II.

1.1 Indefinite integrals.

We use the symbol ∫
f(x) dx

to denote the indefinite integral or anti-derivative of f .
The indefinite integral is a function. The definite integral is a number. According

FTC II, we can find the (numerical) value of a definite integral by evaluating the
indefinite integral at the endpoints of the integral. Since this procedure happens so
often, we have a special notation for this evaluation.

F (x)|bx=a = F (b)− F (a).

Example. Find
xa|bx=a and xa|ya=x

Solution.
ba− a2 xy − x2

According to FTC I, anti-derivatives exist provided f is continuous.
The box on page 351 should be memorized. (In fact, you should already have

memorized this information when we studied derivatives in Chapter 3 and when we
studied anti-derivatives in Chapter 4.)

Example. Verify ∫
x cos(x2) dx =

1

2
sin(x2).



Solution. According to the definition of anti-derivative, we need to see if

d

dx

1

2
sin(x2) = x cos(x2).

This holds, by the chain rule.

1.2 Computing integrals.

The main use of FTC II is to simplify the evaluation of integrals.
We give a few examples.

Example. a) Compute ∫ π

0
sin(x) dx.

b) Compute ∫ 4

1

2x2 + 1√
x

dx.

Solution. a) Since d
dx

(− cos(x)) = sin(x), we have − cos(x) is an anti-derivative of
sin(x). Using the second part of the fundamental theorem of calculus gives,∫ π

0
sin(x) dx = − cos(x)|πx=0 = 2.

b) We first find an anti-derivative. As the indefinite integral is linear, we write∫ 2x2 + 1√
x

dx =
∫

2x3/2 + x−1/2 dx = 2
∫

x3/2 dx +
∫

x−1/2 dx =
4

5
x5/2 + 2x1/2 + C.

With this anti-derivative, we may then use FTC II to find∫ 4

1

2x2 + 1√
x

dx =
4

5
x5/2 + 2x1/2

∣∣∣∣4
x=1

=
4

5
45/2 + 241/2 − (

4

5
+ 2)

= 128/5 + 20/5− (4/5 + 10/5)

= 134/5.

Here, is a more involved example that illustrates the progress we have made.

Example. Find

lim
n→∞

1

n

n∑
k=1

sin(k/n).



Solution. We recognize that
1

n

n∑
k=1

sin(k/n)

is a Riemann sum for an integral. The points xk, k = 0, . . . , n divide the interval [0, 1]
into n equal sub-intervals of length 1/n. Thus, we may write the limit as an integral

lim
n→∞

1

n

n∑
k=1

sin(k/n) =
∫ 1

0
sin(x) dx.

To evaluate the resulting integral, we use FTCII. An anti-derivative of sin(x) is
− cos(x), thus ∫ 1

0
sin(x) dx = − cos(x)|1x=0 = 1− cos(1).

1.3 Differentiating integrals.

FTC I plays an important role in the proof of FTC II. It is also used to find the
derivatives of integrals.

Example. Find

d

dx

∫ x

0
sin(t2) dt

d

dx

∫ x

x2
sin(t2) dt

d

dx

∫ x

1

1

t
dt

Is the function L(x) =
∫ x
1

1
t
dt increasing or decreasing? Is the graph of L concave

up or concave down?

1.4 The net change theorem

Since F is always an anti-derivative of F ′, one consequence of part II of the funda-
mental theorem of calculus is that if F ′ is continuous on the interval [a, b], then∫ b

a
F ′(t) dt = F (b)− F (a).

This helps us to understand some common physical interpretations of the integral.
For example, if p(t) denotes the position of an object. More precisely, if an object

is moving along a line and p gives the number of meters the object lies to the right
of a reference point, then p′ = v is the velocity of the object. The definite integral

p(b)− p(a) =
∫ b

a
v(t) dt (1)



denotes the net change in position of the object during the interval [a, b]. Note that if v
is measured in meters/second, then units on v(t)dt would be meters/second×seconds
so the equation (1) is a sophisticated version of the familiar fact that distance =
rate × time.

To give a less familiar example, suppose we have a rope whose thickness varies
along its length. Fix one end of the rope to measure from and let m(x) denote the
mass in kilograms of the rope from 0 to x meters along the rope. If we take the
derivative, dm

dx
= limh→0 m(x + h)−m(x)h, then this represents an average mass of

the rope near x whose units are kilograms/meter. If we integrate this linear density
and observe that m(0) = 0, then we recover the mass

m(x) =
∫ x

0

dm

dx
dx.
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