Lecture notes: harmonic analysis

Russell Brown
Department of mathematics
University of Kentucky
Lexington, KY 40506-0027

February 16, 2015



11



Contents

Preface

1 The Fourier transform on L!
1.1 Definition and symmetry properties . . . . . . . . .. ... ... ...
1.2 The Fourier inversion theorem . . . . . . .. .. ... ... ... .....

2 Tempered distributions
2.1 Test functions . . . . . . . ...
2.2 Tempered distributions . . . . . . . . ...
2.3  Operations on tempered distributions . . . . . . . .. ... ... ... ..
2.4 The Fourier transform . . . . . . . . . ... ...
2.5 More distributions . . . .. ...

3 The Fourier transform on 2.
3.1 Plancherel’s theorem . . . . . . . . . . ... ... ... ... ... ...,
3.2 Multiplier operators . . . . . . . .. ..o
3.3 Sobolev spaces . . . . ...

4 Interpolation of operators
4.1 The Riesz-Thorin theorem . . . . . . . .. .. .. ... ... .......
4.2 Interpolation for analytic families of operators . . . . . . . ... ... ..
4.3 Realmethods . . . . . . . . .. .. ... ...

5 The Hardy-Littlewood maximal function
5.1 The LP-inequalities . . . . . . . . . ..
5.2 Differentiation theorems . . . . . . . . . ... ... ... ... ... ..

11

vii

11
11
16
17
20
22

25
25
27
29

31
31
37
38



v

6 Singular integrals

6.1 Calderén-Zygmund kernels . . . . . . . . ... ... ... ..
6.2 Some multiplier operators . . . . ... ... .00

7 Littlewood-Paley theory

7.1 A square function that characterizes L . . . . . . . ... ...
7.2 Variations . . . . . . . ...

8 Fractional integration

8.1 The Hardy-Littlewood-Sobolev theorem . . . . . . . . . .. ..
8.2 A Sobolev inequality . . . . .. ... ... L.

9 Singular multipliers

9.1 Estimates for an operator with a singular symbol . . . . . . .
9.2 A trace theorem. . . . . . ... .. ... L.

10 The Dirichlet problem for elliptic equations.

10.1 Domains in R™ . . . . . . . .. ...
10.2 The weak Dirichlet problem . . . . . . .. ... ... .. ...

11 Inverse Problems: Boundary identifiability

11.1 The Dirichlet to Neumann map . . . . . .. .. .. ... ...
11.2 Identifiability . . . . . . . . . .. ...
11.3 Notes . . . . . . . o o

12 Spaces adapted to the operator A + 2( -V

12.1 Spaces adapted to A+2¢-V . . ..o
12.2 Estimates for potentials of negative order . . . . . . . . . . ..
12.3 An averaged estimate . . . . . . .. ... L.
12.4 Notes. . . . . . . . . .

13 Inverse Problems: Global uniqueness for C' conductivities
14 Bessel functions

15 Restriction to the sphere

16 The uniform Sobolev inequality

17 Inverse problems: potentials in L"/?

CONTENTS

51

...... 51
...... 57

63

...... 63
...... 65

69

...... 70
...... 76

81

...... 81
...... 91

95

...... 95

109

...... 109
...... 113
...... 123

125

...... 125
...... 128
...... 132
...... 135

137

143

145

147

149



CONTENTS %

18 Scattering for a two-dimensional system 151
18.1 Jost solutions . . . . . . . ... 152
18.2 Estimates . . . . . . . .. 153
18.3 Notes . . . . . . L o e 158

19 Global existence of Jost solutions 159
19.1 Uniqueness . . . . . . . . . . 159
19.2 Existence of solutions. . . . . . . .. ..o 162
19.3 Behavior for large z . . . . . .. ..o 163

20 Differentiability of the Jost solutions 167
20.1 Differentiability of the Jost solution with respect tox.. . . . . . . . . .. 167
20.2 Differentiability with respect to z . . . . . . . ... ... 169
20.3 Higher derivatives with respect toz . . . . . . . ... ... .. ... ... 172

21 Asymptotic expansion of the Jost solutions 175
21.1 Expansion with respect tox . . . . . . .. ..o 175
21.2 Expansion in z . . . . ..o 177
21.3 The inverse of the scattering map. . . . . . . . ... ... ... 179

22 The scattering map and evolution equations 183
22.1 A quadratic identity . . . . . ... 183
22.2 The tangent maps . . . . . . . . . ... 185
22.3 The evolution equations . . . . . . .. .. ... Lo 188

A Some functional analysis 191
A.1 Topologies . . . . . . . . 191
A.2 Compact operators . . . . . . . . . .. 192

A3 Derivatives . . . . . . . 192



vi

CONTENTS



Preface

These notes are intended for a course in harmonic analysis on R™ which was offered to
graduate students at the University of Kentucky in Spring of 2001. The background for
this course is a course in real analysis which covers measure theory and the basic facts
of life related to LP spaces. The students who were subjected to this course had studied
from Measure and integral by Wheeden and Zygmund and Real analysis: a modern
introduction, by Folland.

Much of the material in these notes is taken from the books of Stein Singular integrals
and differentiability properties of functions, [29] and Harmonic analysis [30] and the book
of Stein and Weiss, Fourier analysis on Euclidean spaces [31]. The monograph of Loukas
Grafakos, Classical and modern Fourier analysis [14] provides an excellent treatment of
the Fourier analysis in the first half of these notes.

The exercises serve a number of purposes. They illustrate extensions of the main
ideas. They provide a chance to state simple results that will be needed later. They
occasionally give interesting problems.

These notes are at an early stage and far from perfect. Please let me know of any
errors.

Participants in the 2008 version of the course include Jun Geng, Jay Hineman, Joel
Kilty, Julie Miker, Zhongyi Nie, Michael Shaw, and Justin Taylor. Their contributions
to improving these notes are greatly appreciated.

Participants in the 2011 version of the course include Murat Akman, Daniel Corral,
Megan Gier, Laura Graham, Tao Huang, Michael Music, Aaron Saxton, Ryan Walker,
and Robert Wolf.

Russell Brown, russell.brown@uky.edu

Vil



viii PREFACE

This work is licensed under the Creative Commons Attribution-Noncommercial-Share
Alike 3.0 United States License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

The latex source is available from the author.



Chapter 1

The Fourier transform on L!

In this chapter, we define the Fourier transform and give the basic properties of the
Fourier transform of an L'(R™) function. Recall that L'(R™) is the space of Lebesgue
measurable functions for which the norm ||f|ly = [g. |f(z)|dz is finite. For 0 < p <
0o, LP(R™) denotes the space of Lebesgue measurable functions for which the norm
1f1l, = (fgn |f ()] dz)*/? is finite. When p = oo, the space L*°(R") is the collection of
measurable functions which are essentially bounded. For 1 < p < oo, the space LP(R™)

is a Banach space. We recall that a vector space V over C with a function || - || is called
a normed vector space if || - || : V' — [0, 00) and satisfies
IF+ol < M+l figeV
IAFD = LA Few, AeC
Ifll = 0, if and only if f = 0.
A function || - || which satisfies these properties is called a norm. If || - || is a norm, then
| f — gl defines a metric. A normed vector space (V, || - ||) is called a Banach space if V

is complete in the metric defined using the norm. Throughout these notes, functions are
assumed to be complex valued.

1.1 Definition and symmetry properties

We define the Fourier transform. In this definition, x - £ is the inner product of two
elements of R", z-{ = Y7, ;¢;.

Definition 1.1 If f € L*(R"), then the Fourier transform of f, f, is a function defined

1



2 CHAPTER 1. THE FOURIER TRANSFORM ON L}

on R"™ and s given by

f&) = fla)eda.
RTL
The Fourier transform is a continuous map from L! to the bounded continuous func-
tions on R".

Proposition 1.2 If f € LY(R"), then f is continuous and
1 fllee < 111

Proof. The estimate follows since e~ is of modulus 1. Let {¢/} be a sequence in R"
with lim; o & = &, then we have lim; o e % f(x) = f(x)e ™ and e~ f(z)] <
|f(z)|. By the Lebesgue dominated convergence theorem, we have lim;_,, f(&7) — f(&).
I

The inequality in the conclusion of Proposition 1.2 is equivalent to the continuity of
the map f — f. This is an application of the conclusion of the following exercise.

Exercise 1.3 A linear map T : V — W between normed vector spaces is continuous if
and only if there exists a constant C' so that

1T fllw < Cllfllv-

In the following proposition, we use A~" = (A~1)! for the transpose of the inverse of
an n X n matrix, A.

Exercise 1.4 Show that if A is an n x n invertible matriz, then (A1)t = (A"~

Exercise 1.5 Show that A is an n x n matriz, then Ax -y =z - Aly.

Proposition 1.6 If A is an n X n invertible matriz with real entries, then
foA=|detAl 'foA

Proof. If we make the change of variables, y = Ax in the integral defining f/o\A, then

we obtain

FoA(®) = | flAv)e™™tdx
Rn

= |det A" [ fly)e A Ve dy
Rn

= [det AN [ fly)e A dy,
R”
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If we set fe(z) = e ™f(x/€) for € > 0, then a simple application of Proposition 1.6
gives
fe(&§) = f(€€). (1.7)
Recall that an orthogonal matrix is an n X n-matrix with real entries which satisfies
O'O = I, where I, is the n x n identity matrix. Such matrices are clearly invertible since
O~! = O'. The group of all such matrices is usually denoted by O(n).

Corollary 1.8 If f € LY(R"™) and O is an orthogonal matrixz, then foO = f/o\O.

Exercise 1.9 If x € R", show that there is an orthogonal matrix O so that Ox =
(|=],0,...,0).

Exercise 1.10 Let A be an n X n matriz with real entries. Show that A is orthogonal if
and only if Av - Ax =z - x for all z € R™.

We say that function f defined on R™ is radial if there is a function F' on [0,00) so
that f(xz) = F(|x|). Equivalently, a function is radial if and only if f(Oz) = f(x) for all
orthogonal matrices O.

Corollary 1.11 Suppose that f is in L' and f is radial, then f 15 radial.

Proof. WeA fix £ in R" and czhoose O 50 that O¢ = (|£/,0,...,0). Since fo O = f, we
have that f(£) = f o O(£) = f(O€) = f([],0,...,0). "

We shall see that many operations that commute with translations can be expressed
as multiplication operators using the Fourier transform. One important operation which
commutes with translations is differentiation. Below we shall see how to display this
operation as a multiplication operator. As our first example of this principle, we will
see that the operation of translation by h (which surely commutes with translations)
corresponds to multiplying the Fourier transform by e”¢. We will use 7, to denote
translation by h € R", 7,f(x) = f(z + h).

Exercise 1.12 If f is a differentiable function on R"™, show that

0 0
a_ijhf = Tha—wjf-
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Proposition 1.13 If f is in L'(R"), then

Tf(€) = €™ f(¢).

Also, ‘ A
(€™ f) = T-n(f). (1.14)

Proof. We change variables y = x + h in the integral

WO = [ farme o= [ fe ey <o)
The proof of the second identity is just as easy and is left as an exercise. 1

Example 1.15 If I = {z : |z;| < 1}, then the Fourier transform of f = x; is easily

computed,
H/ 16 g —H28m5]~

In the next exercise, we will need to write integrals in polar coordinates. For our
purposes, this means that we have a Borel measure ¢ on the sphere, S"! = {2/ € R" :
|2’| = 1} so that

f(z)de = /OO f(ra')do (" )yr™ "t dr.
Rr 0 Jsnt

Exercise 1.16 If B,(z) = {y : |t —y| < r} and f = XxB,(0), compute the Fourier
transform f

Hints: 1. Since f is radial, it suffices to compute f at (0,...,7r) forr > 0. 2.
Write the integral over the ball as an iterated integral where we integrate with respect to
' = (x1,...,2,_1) and then with respect to x,. 3. You will need to know the volume of a
ball, see exercise 1.30 below. 4. At the moment, we should only complete the computation
in 8 dimensions (or odd dimensions, if you are ambitious). In even dimensions, the
answer cannot be expressed in terms of elementary functions. See Chapter 14 for the
answer in even dimensions. One possible answer is

1
fe) = Y2 / e-iel(1 — g2)(n-1/2 gy
-1

n—1

Here, w,_o is the surface area of the unit ball as defined in Ezxercise 1.30.
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Theorem 1.17 (Riemann-Lebesque) If f is in L*(R"), then

~

lim f(¢) = 0.

|§|—00

Proof. We let X C L'(R") be the collection of functions f for which lim e f(g) =0.
It is easy to see that X is a vector space. Thanks to Proposition 1.2, X is closed in
the L'-norm. According to Example 1.15, Proposition 1.13 and Proposition 1.6 the
characteristic function of every rectangle is in X. Since finite linear combinations of
characteristic functions of rectangles are dense in L', X = L'(R"). 1

Combining the Riemann-Lebesgue Lemma and Proposition 1.2, we can show that the
image of L'(R™) under the Fourier transform is contained in Co(R™), the continuous
functions on R"™ which vanish at infinity. This containment is strict. We will see that
the Fourier transform of the surface measure on the sphere S"~! is in Co(R™). It is a
difficult and unsolved problem to describe the image of L' under the Fourier transform.

One of our goals is to relate the properties of f to those of f . There are two general
principles which we will illustrate below. These principles are: If f is smooth, then f
decays at infinity and If f decays at infinity, then f 1s smooth. We have already seen
several examples of these principles. Proposition 1.2 asserts that if f is in L!, which
requires decay at infinity, then f is continuous. The Riemann-Lebesgue Lemma tells us
that if f is in L', and thus is smoother than the distributions to be discussed below,
then f has limit 0 at infinity. The propositions below give further illustrations of these
principles.

Proposition 1.18 If f and z;f are in L', then f 15 differentiable and the derivative is

given by
0 . —
Yag ! =l
Furthermore, we have
of
2L < s Fl
I I <l

Proof. Let h € R and suppose that e; is the unit vector parallel to the z;-axis. Using
the mean-value theorem from calculus, one obtains that

e—ix-(£+hej) _ 6—iz-§
h

< |-
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Our hypothesis that x; f is in L' allows us to use the dominated convergence theorem to
bring the limit inside the integral and compute the partial derivative

8]0(5) i / e—ix~(§+h6;': — e_i:v{f(x) do — /(—il‘j)e_ixff(l') de.

@fj h—0

The estimate follows immediately from the formula for the derivative. 1

Note that the notation in the previous proposition is not ideal since the variable z;
appears multiplying f, but not as the argument for f. One can resolve this problem by
decreeing that the symbol z; stands for the multiplication operator f — x;f and the jth
component of x.

For the next proposition, we need an additional definition. We say f has a partial
derivative with respect to x; in the L? sense if f is in L” and there exists a function

J0f/0x; in LP(R™) so that

o1 of
}ng(l] HE(Thejf —f) = a—xij =0.

Proposition 1.19 If f is differentiable with respect to x; in the L'-sense, then

. Of
i) = oL

Furthermore, we have

) of
16l < Ha_

1
Proof. Let h > 0 and let e; be a unit vector in the direction of the x; - axis. Since the
difference quotient converges in L', we have

/ e_mgﬁ(ﬁ) dr = lim e_mff(x + he;) = /() d

0z h—0 Jrn h

x.

In the last integral, we can make a change of variables y = x + he; to move the difference
operator to the exponential function

—i(x—he;)€ _ ,—ix€
/ ‘ ; ‘ f(x)dx.

Since the difference quotient of the exponential converges pointwise and boundedly in =

~

to i;e~"¢ we can use the dominated convergence theorem to obtain 0f/0x; = i&;f.
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Finally, our last result on translation invariant operators involves convolution. Recall
that if f and g are measurable functions on R"”, then the convolution is defined by

fxg(r)= - flz —y)g(y) dy

provided the integral on the right is defined for a.e. x.
Some of the basic properties of convolutions are given in the following exercises. The
solutions can be found in most real analysis texts.

Exercise 1.20 If f is in L' and g is in LP, with 1 < p < oo, show that f * g(x) is
defined a.e. and
1F+gllp < M1 llgllp-

Exercise 1.21 Show that the convolution is commutative. If f x g(x) is given by a
convergent integral, then

fxg(x) =g f(z)
If f, g and h are in L', show that convolution is associative
fr(gxh)=(fxg)xh.
Hint: Change variables.

Exercise 1.22 The map f — f * g commutes with translations:

([ *g) = (Tf) * g.

Exercise 1.23 (Young’s convolution inequality) If the exponents p, q and s satisfy 1/s =
1/p+1/q—1, then
1% glls < 1 fllpllgllq-

The following proposition shows that the image of L' under the Fourier transform
is an algebra under pointwise multiplication. This algebra is usually called the Wiener
algebra.

Proposition 1.24 If f and g are in L', then
(f*gy= 1.

Proof. The proof is an easy application of Fubini’s theorem. 1
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Next, we calculate a very important Fourier transform. The function W in the next
proposition gives (a multiple of) the Gaussian probability distribution.

Proposition 1.25 Let W(z) be defined by W (x) = exp(—|z|*/4). Then
W () = (Vam)" exp(—[¢]*).

Proof. We use Fubini’s theorem to write W as a product of one-dimensional integrals

n
/ e*|x|2/467’£:p-§ dr = H/ e—x?/4€7i2j£j dmj
n i R

To evaluate the one-dimensional integral, we use complex analysis. We complete the
square in the exponent for the first equality and then use Cauchy’s integral theorem to
shift the contour of integration in the complex plane. This gives

/ =2 gin g le? / o (B2 g _ el / o124 gy _ ool
R R

R

Exercise 1.26 Carefully justify the shift of contour in the previous proof.
Exercise 1.27 FEstablish the formula

/ e ™ dr =1

which was used above. a) First consider n = 2 and write the integral over R* in polar
coordinates.
b) Deduce the general case from this special case.

Exercise 1.28 In this exercise, we give an alternate proof of Proposition 1.25 in the
case n = 1.

Let ¢(§) = fR e~ e E . Differentiate under the integral sign and use Proposition
1.19 to show that ¢' (&) = —2£¢(&). Use exercise 1.27 to compute ¢(0). Thus ¢ is a
solution of the initial-value problem

{ ¢'(§) = —260(¢)
¢(0) = (4m)'/?

One solution of this initial-value problem is given by (47T)1/26*52.
To establish uniqueness, suppose that v is a solution of ¥'(§) = —2&¢(§) and differ-
entiate to show that the w(f)652 is constant.
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In the next exercise, we use the I' function, defined for Res > 0 by

> dt
[(s) :/ et —.
0 t
Exercise 1.29 a) Use exercise 1.27 to find I'(1/2).
b) Integrate by parts to show that I'(s + 1) = sI'(s). Conlude that I'(n + 1) = n! for
n=123,....
c¢) Use the formula T'(s + 1) = sI'(s) to extend I' to the range Res > —1. Find
r'(-1/2).

Exercise 1.30 a) Use the result of exercise 1.27 and polar coordinates to compute wy,_1,
the n — 1-dimensional measure of the unit sphere in R™, and show that

9 n/2
Wno1 = 0(S" 1) = T

- T(n/2)

b) Let m(E) denote the Lebesgue measure of a set in R". Use the result of part a)
and polar coordinates to find the volume of the unit ball in R™. Show that

m(B1(0)) = wp_1/n.

1.2 The Fourier inversion theorem

In this section, we show how to recover an L!-function from the Fourier transform. A
consequence of this result is that we are able to conclude that the Fourier transform
is injective. The proof we give depends on the Lebesgue differentiation theorem. We
will discuss the Lebesgue differentiation theorem in the chapter on maximal functions,
Chapter 4.

We begin with a simple lemma.

Lemma 1.31 If f and g are in L*(R™), then

f)g(x)de = | [f(x)j(z)da.

R" R"

Proof. We consider the integral of f(x)g(y)e™¥* on R?". We use Fubini’s theorem to
write this as an iterated integral. If we compute the integral with respect to x first, we
obtain the integral on the left-hand side of the conclusion of this lemma. If we compute
the integral with respect to y first, we obtain the right-hand side. 1
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We are now ready to show how to recover a function in L! from its Fourier transform.

Theorem 1.32 (Fourier inversion theorem) If f is in L'(R"™) and we define f; fort >0

by
) = o [ e e as
then
Jim [fi = flli =0
and

lim fi(x) = f(x), a.e. x.

t—0t

Proof. We consider the function g(x) = e !+ By Proposition 1.25, (1.7) and
(1.14), we have that

g(x) = (2m)" (4mt) 2 exp(—y — =[*/4t).
Thus applying Lemma 1.31 above, we obtain that
1 NS . ly —
ix-& —t|€| de = At n/2 _
g o FOF e g = | gty e

Thus, fi(z) is the convolution of f with the Gaussian and it is known that f; — f
in L'. That f, converges to f pointwise a.e. is a standard consequence of the Lebesgue
differentiation theorem. A proof will be given in Chapter 5. 1

) dz.

It is convenient to have a notation for the inverse operation to the Fourier transform.
The most common notation is f. Many properties of the inverse Fourier transform follow
easily from the properties of the Fourier transform and the inversion. The following
simple formulae illustrate the close connection:

flz) = f(=a) (1.33)

f@) = ——fl). (1.34)

If f is in L', then the limit in ¢ in the Fourier inversion theorem can be brought inside
the integral (by the dominated convergence theorem) and we have

F(z) = ! P
F@) = oy [ S(@e"de

Exercise 1.35 Prove the formulae (1.33) and (1.34) above.




Chapter 2

Tempered distributions

In this chapter, we introduce the Schwartz space. This is a space of well-behaved functions
on which the Fourier transform is invertible. One of the main interests of this space
is that other interesting operations such as differentiation are also continuous on this
space. Then, we are able to extend differentiation and the Fourier transform to act on
the dual space. This dual space is called the space of tempered distributions. The word
tempered means that in a certain sense, the distributions do not grow too rapidly at
infinity. Distributions have a certain local regularity—on a compact set a distribution
can be obtained by differentiating a continuous function finitely many times. Given
the connection between the local regularity of a function and the growth of its Fourier
transform, it seems likely that any space on which the Fourier transform acts should have
some restriction on the growth at infinity.

2.1 Test functions

The main notational complication of this chapter is the use of multi-indices. A multi-
index is an n-tuple of non-negative integers, a = (o, ..., q,). For a multi-index «, we
let

«

=t

o
We also use this notation for partial derivatives,
80( aa1 aan
Oxe 9zt Qzom

Several other related notations are

lal=a1+ -+ a, and al=ail.. .,

11
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Note that the notation of the length of a multi-index «, |«|, conflicts with the standard
notation for the Euclidean norm. This inconsistency is firmly embedded in analysis and
I will not try to change it.

Below are a few exercises which illustrate the use of this notation.

Exercise 2.1 The multi-nomial theorem.
|
(@1 + -+ )" ZM
|a|=F

Exercise 2.2 Show that

(x+y)* Z

Bty=a

Exercise 2.3 The Leibniz rule. If f and g have continuous derivatives of order up to k
on R™ and « is a multi-index of length k, then

0*(fg) al Pf g
den ~ 2 B0 w 24)

Exercise 2.5 Show for each multi-index c,

aa
ox™ o

= qal.

More generally, show that
98 ol o

a: T

928"~ (a—B)!

The right-hand side in this last equation is defined to be zero if any component of a — (8
18 negative.

To define the Schwartz space, we define a family of semi-norms on the collection of
infinitely differentiable functions on R, C°°(R™). For each pair of multi-indices « and
B, we let

We say that a function f is in the Schwartz space on R™ if p,s(f) < oo for all o and
B. This space is denoted by S(R™). Recall that a norm was defined in Chapter 1. If
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a function p : V. — [0,00) satisfies p(f + g) < p(f) + p(g) for all f and g in V' and
p(Af) = |Alp(f), then p is called a semi-norm on the vector space V.

The Schwartz space is given a topology using the semi-norms p,s in the following
way. Let {p;}52, be an arbitrary ordering of the norms p,s. Let p; = min(p;, 1) and

then define B
=> 27pi(f - 9).
j=1

Lemma 2.6 The function p is a metric on S(R"™) and S(R™) is complete in this metric.
The vector operations (f,g) — f+ g and (X, f) — \f are continuous on S(R").

Exercise 2.7 Prove Lemma 2.6.

Note that our definition of the metric involves an arbitrary ordering of the norms p,s.
One consequence of the next proposition, Proposition 2.8 is that the topology on S(R™)
does not depend on the ordering of the semi-norms.

Proposition 2.8 A set O is open in S(R™) if and only for each f € O, there exist
finitely many semi-norms pa,p, and € >0, 1 =1,..., N so that

{9 pasp.(f—g)<e, i=1,....N}CO.
We will not use this proposition, thus the proof is left as an exercise.
Exercise 2.9 Prove Proposition 2.8 Hint: Read the proof of Proposition 2.11.

Exercise 2.10 The Schwartz space is an example of a Fréchet space. A Fréchet space
is a vector space X with a countable family of semi-norms {p;}. We define p(f — g) by
p(f—9)=>27p;(f —g). The space X is Fréchet if p is a metric and if X is complete
in the metric p.

Show that S(R™) is a Fréchet space.

Proposition 2.11 a) A linear map T from S(R™) to S(R™) is continuous if and only

if for each semi-norm pag, there exists a finite collection of semi-norms {pap : 1 =
1...,N} and a constant C' so that

N
pas(Tf) £ C Y pasai(f)
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b) A map u from S(R™) to a normed vector space V' is continuous if and only if there
ezists a finite collection of semi-norms {pa,s, 11 =1...,N} and a constant C' so that

[u(h)llv < Czpaiﬁi(f)-

Proof. To prove part a), we first suppose that T : & — S is continuous. Let the
given semi-norm p,g = py under the ordering used to define the metric. Then T is
continuous at 0 and hence given € = 27V~ there exists § > 0 so that if p(g) < §, then
p(Tg) < 27N='. We may choose M so that 3 7, 277 < §/2. Given f, we set

_9 f
2 Z]Ai1 2fjpj(f>‘

The function g satisfies p(g) < d and thus p(Tg) < 27¥~1. This implies that py(Tg) <
1/2. Thus, by the homogeneity of py and T', we obtain

9

1L
PMTﬂ§3;22%Kﬂ

Now suppose that the second condition of our theorem holds and we verify that the
€ — ¢ formulation of continuity holds. Since the map T is linear, it suffices to prove
that 7T is continuous at 0. Let ¢ > 0 and then choose N so that 27" < ¢/2. For each
j=1,..., N, there exists C; > 0 and M; so that

BTN <O ).

If we set My = max(M, ..., My), and Cy = max(C,...,Cy), then we have

N
p(Tf) < D 27p(Th) +3
j=1

N

< Y (z—jzopkm) +E (212)

j=1

Now we define § by 6 = 27 min(1,¢/(2MyCy)). If we have p(f) < §, then we have
pe(f) < 1and pp(f) < €/(2MoCy) for k =1,..., My. Hence, we have pi(f) < €¢/(2MCp)
for k =1,..., My. Substituting this into the inequality (2.12) above gives that p(T'f) < e.

The proof of the part b) is simpler and is left as an exercise. 1
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Exercise 2.13 Show that the map f — 0f/0x; is continuous on S(R™).
Exercise 2.14 Show that the map f — x;f is continuous on S(R").

Finally, it would be embarrassing to discover that the space S(R") contains only the
zero function. The following exercise implies that S(R™) is not trivial.

Exercise 2.15 a) Let

wo={ g 120

Show that ¢(t) is in C*°(R). That is, ¢ has derivatives of all orders on the real line.
Hint: Show by induction that ¢*)(t) = Py, (1/t)e™"* for t > 0 where Py, is a polynomial
of order 2k.

b) Show that ¢(1 — |z|*) is in S(R™). Hint: This is immediate from the chain rule
and part a).

Lemma 2.16 If 1 < p < oo, then S(R™) is dense in LP(R").

Proof. Let ¢ be the function defined in part b) of exercise 2.15 and then define n =
¢/([ ¢dx) so that [, n(z)dr = 1. Define n.(x) = e "n(x/€) and given f in LP(R™), set
fe=mex f . 1t is known that if 1 < p < oo, then

lim || fe — fll, =0, 1<p<oo.
e—0t

See [40], for example.
Finally, let

f61,62 (x) - ¢(€21’)f51 (:B)

Since ¢(0) = 1, we can choose €; and then e, small so that || f — fe, ||, is as small as we

like. Since fe, ., is infinitely differentiable and compactly supported, we have proven the
density of S(R") in L”. 1

Exercise 2.17 Show that if we take the closure of S(R™) in the norm of L, we obtain
Co(R™), the class of continuous functions on R™ which vanish at infinity.
In particular, we can conclude that Lemma 2.16 does not hold for p = oco.
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2.2 Tempered distributions

We define the space of tempered distributions, S'(R™) as the dual of S(R™). If V is a
topological vector space, then the dual is the vector space of continuous linear functionals
on V. We give some examples of tempered distributions.

Example 2.18 FEach f € S gives a tempered distribution by the formula

g —us(g) = - f(z)g(x)dx.

In the following example, we introduce the standard notation (x) = (1 + |z|?)'/2.

Example 2.19 If f is in LP(R") for some p, 1 < p < oo, then we may define a tempered
distribution uy by

us(g) = . f(z)g(z) dx

To see this, note that if N is a non-negative integer, then (x)V|f(x)| is bounded by
a linear combination of the norms, pao(f) for o < N. Thus, for f € S(R™), we have
that there exists a constant C = C'(n,N) so that

(1@ e <05 ol [ ) o)

If we fix N so that pN > n, then the integral on the right-hand side of the above inequality
(2.20) is finite and we obtain a constant C' so that

£l < C(n.p) > paolf)- (2.20)

la|<N

Note that for p = oo, the estimate || f|lcc < poo(f) is obvious. Now for f is in LP, we
have |ug(g)| < || fllpllglly from Hélder’s inequality. Now the inequality (2.20) applied to
g and the LP" norm and Proposition 2.11 imply that Ug 15 CONLINUOUS.

Exercise 2.21 Forl < p < oo and k € R we may define a weighted LP-space L} (R") =
{f: (x)f(x) € L} with the norm

= ([ rerere)”

Show that if f € LY for some p and k then us(g) = [ fgdz defines a tempered
distribution.
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Exercise 2.22 Suppose that f is a locally integrable function and that there are constants
C and N so that

/ |f(z)|dx < ORY, R>1.

{z:|z|<R}

Show that f defines a tempered distribution.

Exercise 2.23 Show that the map f — uy from S(R™) into S'(R") is injective.

Example 2.24 The delta function ¢ is the tempered distribution given by
o(f) = f(0).

Example 2.25 More generally, if p is any finite Borel measure on R"™, we have a dis-
tribution w, defined by

w(f) = [ fau

This is a tempered distribution because

()] < |l (R™) poo(f)-

Example 2.26 Any polynomial P gives a tempered distribution by

ur(f) = [ Plo)fa)do.
Example 2.27 For each multi-index o, a distribution is given by

sy = 21O

2.3 Operations on tempered distributions

If T is a continuous linear map on S(R") and u is a tempered distribution, then f —
u(Tf) is also a distribution. The map u — w o T is called the transpose of T" and is
sometimes written as T%u = w o T'. This construction is an important part of extending
familiar operations on functions to tempered distributions. Our first example considers
the map

o“f

f= Oz
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which is clearly continuous on the Schwartz space. Thus if u is a distribution, then we
can define a new distribution by
o~ f

v(f)=u .
(f) = w52
If we have a distribution u which is given by a Schwartz function f, we can integrate by
parts and show that

0%

_1 ‘a| - et et .

(=1) uf(@xa) Ugo £ /02 (G)

Thus we will define the derivative of a distribution wu by the formula

T ) = ()T Y,

This extends the definition of derivative from smooth functions to distributions. When
we say extend the definition of an operation 7" from functions to distributions, this means
that we have
Tu f=ury
whenever f is a Schwartz function.
This definition of the derivative on distributions is an example of a general procedure

for extending maps from functions to distributions. Given a map 7' : S(R") — S(R"),
we can extend 7" to S'(R™) if if we can find a (formal) transpose of T', T*, that satisfies

/ Tfgdr = fT'gdx
n Rn

for all f,g € S(R™). Then if T" is continuous on S(R™), we can define T on S'(R™) by
Tu(f) = w(T"f).

Exercise 2.28 Show that if o and 8 are multi-indices and u is a tempered distribution,
then
o* o8 9% o~
U= u.
Ox® OxP 0xP Oz
Hint: A standard result of vector calculus tells us when partial derivatives of functions
commute.

Exercise 2.29 Suppose that f is in LP for some p with 1 < p < oo and that the partial
derivative Of [Ox; exists in the LP sense. Let uy be the tempered distribution give by the
function f and show that
0
—Uf = UYf Oz, -
0 f 0f /0,
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Exercise 2.30 Let H(t) be the Heaviside function on the real line. Thus H(t) = 1 if
t >0 and H(t) =0 if t <0. Find the distributional derivative of H. That is find H'(¢)
for ¢ in S.

We give some additional examples of extending operations from functions to distribu-
tions. If P is a polynomial, then we f — Pf defines a continuous map on the Schwartz
space. We can define multiplication of a distribution by a polynomial by Pu(f) = u(Pf).

Exercise 2.31 Show that this definition extends to ordinary product of functions in the
sense that if f is a Schwartz function,
Upy = PUf.

Exercise 2.32 Show that if f and g are in S(R™), then fg is in S(R™) and that the
map
f—=1g
18 continuous.
Exercise 2.33 Show that 1/x defines a distribution on R by
1
u(f) = lim f(z)—dx.
e—0t {z:|x|>€} z

This way of giving a value to an integral which is not defined as an absolutely convergent
integral is called the principal value of the integral. Hint: The function 1/x is odd, thus
if we consider f{€<|x|<1} f(x)/zdx, we can subtract a constant from f without changing
the value of the integral.

Exercise 2.34 Let u(f) = limg_,oo f_Roo f(t)et dt, provided the limit exists. Is u a tem-
pered distribution?

Exercise 2.35 Let u(f) = limpg ;o0 fio e’ sin(e') dt, provided the limit exists. Is the map
u a tempered distribution?

Next we consider the convolution of a distribution and a test function. If f and g are
in the Schwartz class, we have by Fubini’s theorem that

| res@n@as= [ 1) [ 8@t - sy

The reflection of g, g is defined by g(x) = g(—=z). Thus, we can define the convolution
of a tempered distribution u and a test function g, g * u by

g*u(f) =u(f*g).

This will be a tempered distribution thanks to exercise 2.37 below.
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2.4 The Fourier transform

Proposition 2.36 The Fourier transform is a continuous linear map from S(R™) to
S(R™) with a continuous inverse, f — f.

Proof. We use the criterion of Proposition 2.11 to show that the Fourier transform is
continuous. If we consider the expression in a semi-norm, we have

JOP o
& 2631 O = (5a2"h)

where we have used Propositions 1.18 and 1.19. By the Leibniz rule in (2.4), we have

a° al o
By — B ~
(e’ T= 2. o g g )

y+o=a

Hence, using the observation of (2.20) and Proposition 1.18, we have that there is a
constant C' = C'(n) so that

pas(H)<C D ).

ASByISlel+n+1

Now, Proposition 2.11 implies that the map f — f is continuous. In addition, as f is
in S(R™) and hence in L', we may use the Fourier inversion theorem, Theorem 1.32 to

obtain that f: f
Given (1.34) or (1.33) the continuity of f — f on S(R") is immediate from the

continuity of f — f and it is clear that f lies in the Schwartz space for f € S(R").

Then, we can use (1.34) and then the Fourier inversion theorem for L!, Theorem 1.32,

to show

1

gl =T =1

f=

Exercise 2.37 Show that if f and g are in S(R™), then f* g € S(R™). Furthermore,
show that f — f *x g is continuous on S. Hint: One way to do this is to use the Fourier
transform and reduce to a problem about pointwise products.

Next, recall the identity

[ f@g@yar = [ s@it) ds
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of Lemma 1.31 which holds if f and ¢ are Schwartz functions. Using this identity, it is
clear that we want to define the Fourier transform of a tempered distribution by

u(g) = u(g)-

Then the above identity implies that if u; is a distribution given by a Schwartz function,
or an L' function, then

us(g) =iy(g)-
Thus, we have defined a map which extends the Fourier transform. ;
In a similar way, we can define @ for a tempered distribution u by a(f) = u(f).

Theorem 2.38 The Fourier transform is an invertible linear map on S'(R™).

Proof. We know that f — f is the inverse of the map f — f on S(R™). Thus, it is easy
to see that u — @ is an inverse to u — @ on S'(R"). 1

Exercise 2.39 If f is L', we have two ways to talk about the Fourier transform of f. We
defined f as the Fourier transform of an L' function in Chapter 1 and in this chapter,
we defined the Fourier transform of the distribution uy gien by us(g) = [ fgdx. Show
that

ﬂf = Uf
Exercise 2.40 Show that if f is in S, then f has a derivative in the L'-sense.

Exercise 2.41 Show from the definitions that if u is a tempered distribution, then

(el = (i)
and that 94
(—i)"u) = (50

We define convergence of distributions. We will say that a sequence of distributions
{u;} converges to u in S'(R™) if
lim u;(f) = u(f), forevery f e SR").
j—o0
The standard topology on the space of distributions, S’(R") is the weak-* topol-
ogy. To define this topology, we recall the notation u; to denote the distribution

g — fRn fgdx. The weak-* topology is the weakest topology that makes the family
of maps {uy: f € S(R™)} continuous.
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Exercise 2.42 Show that a sequence of distributions converges in the weak-* topology if
and only if it converges in the sense described above.

Exercise 2.43 If f; is a sequence of functions and f; converges in LP(R") to f, show
that the distributions uy, given by f; converge to uy.

Exercise 2.44 Let u; be a sequence of L*(R™) functions and suppose that i; are uni-
formly bounded and converge pointwise a.e. to a function v. Show that we may define a
tempered distribution w by u(f) = lim;_o u;(f) and that 4(f) = [ fudz.

Exercise 2.45 Let u be the temperered distribution defined in Exercise 2.33,

u(f)=1m [ fn

e—0Tt |z|>e t

Find 4. Hint: Consider the sequence of function f;(t) = txqi/j<j<j(t) and use the
PTevious exrercise.

Exercise 2.46 (Poisson summation formula) If f is in S(R), show that we have

f: f(x+27rk):% i f(k)e™=.

k=—o00 k=—o00

Hint: The standard proof requires basic facts about Fourier series.
b) Show that P =" 0; defines a tempered distribution and that

j==oc

PZQTF i (Sgﬁk.

k=—00

2.5 More distributions

In addition to the tempered distributions discussed above, there are two more spaces of
distributions that are commonly studied. The (ordinary) distributions D’(R") and the
distributions of compact support, £&'(R™). The D’ is defined as the dual of D(R"), the
set of functions which are infinitely differentiable and have compact support on R"™. The
space &' is the dual of £(R"™), the set of functions which are infinitely differentiable on
R™.
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Since we have the containments,
DR") Cc S(R") C E(R"),
we obtain the containments
E'(R") cS'(R") Cc D'(R").

To see this, observe that (for example) each tempered distribution defines an ordinary
distribution by restricting the domain of u from & to D.

The space D'(R™) is important because it can also be defined on open subsets of R™
or on manifolds. The space £ is interesting because the Fourier transform of such a
distribution will extend holomorphically to C". The books of Laurent Schwartz [26, 27]
are still a good introduction to the subject of distributions.
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Chapter 3

The Fourier transform on LZ.

In this section, we prove that the Fourier transform acts on L? and that f — (2%)_”/ 2 f
is an isometry on this space. Each L? function gives a tempered distribution and thus
its Fourier transform is defined. Thus, the new result is to prove the Plancherel identity
which asserts that f — (2%)*”/2]‘: is an isometry.

3.1 Plancherel’s theorem

Proposition 3.1 If f and g are in the Schwartz space, then we have

1
(27)"

| @gla)de = @3 de.

Proof. According to the Fourier inversion theorem, Theorem 1.32,

1 =
@)

g:

Thus, we can use the identity of Lemma 1.31 of Chapter 1 to conclude the Plancherel
identity for Schwartz functions. 1

Theorem 3.2 (Plancherel) If f is in L2, then f is in L? and we have

[ i@k = g [1 R de

Furthermore, the map f — f 15 1nvertible.

25
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Proof.  According to Lemma 2.16 we may approximate f by a sequence of functions { f;}
taken from the Schwartz class, {f;}. Applying the previous proposition with f = g =
fi — f; we conclude that the sequence { f]} is Cauchy in L?. Since L? is complete, the
sequence {f;} has a limit, F. Since f; — F in L? we also have that {f;} converges to
I as tempered distributions. To see this, we use the definition of the Fourier transform,
and then that {f;} converges in L? to obtain that

uilo) = [ fodo = i [ fgde = [ fgds= [ e

Thus f = F. The identity holds for f and f since it holds for each fj-

We know that f has an inverse on S, f — f. The Plancherel identity tells us this
inverse extends continuously to all of L2, It is easy to see that this extension is still an
inverse on L2. 1

Recall that a Hilbert space H is a complete normed vector space where the norm
comes from an inner product. An inner product is a map (-,-) : H x H — C which
satisfies

(x,y) = (y,x), ifev,yeH

(Az,y) = Mz, y), v,y €M, A€C
(x,z) >0, reH

(x,x) =0, if and only if x =0

Exercise 3.3 Show that the Plancherel identity holds if [ takes values in finite dimen-
sional Hilbert space. Hint: Use a basis.

Exercise 3.4 Show by example that the Plancherel identity may fail if f does not take
values in a Hilbert space. Hint: The characteristic function of (0,1) C R should provide
an example. Norm the complex numbers by the co-norm, ||z|| = max(Re z,Im z).

Exercise 3.5 (Heisenberg inequality.) If f is a Schwartz function, show that we have
the inequality:

w [ 17@F do < 2o fla] VSl
Hint: Write

| nlf@pd= [ (div o)l
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and integrate by parts. Recall that the gradient operator V and the divergence operator,
div are defined by

af of . —~ 0f;

Vf= (a_xl’“"awn) and div (f1,..., fa) :;8_1’;'

This inequality is a version of the Heisenberg uncertainty principle in quantum me-

chanics. The function |f(x)|? is a probability density and thus has integral 1. The integral

of |xf|* measures the uncertainty of the position of the particle represented by f and the

integral of |V f| measures the uncertainty in the momentum. The inequality gives a lower
bound on the product of the uncertainty in position and momentum.

If we use Plancherel’s theorem and Proposition 1.19, we obtain

| 9spds = en [ e

If we use this to replace ||V f||2 in the above inequality, we obtain a quantitative version
of the statement “We cannot have f and f concentrated near the origin.”

3.2 Multiplier operators

If o is a tempered distribution, then o defines a multiplier operator T,S(R") — S'(R™)
by

(T, fy=of.

The function o is called the symbol of the operator. It is clear that 7, maps S(R"™) to
S'(R™).

Our main interest is when o is a locally integrable function. Such a function will be
a tempered distribution if there are constants C' and N so that

/ lo(€)] dé < CRN for all R > 1.
Br(0)

See exercise 2.22.

Exercise 3.6 Is this condition necessary for a positive function to give a tempered dis-
tribution?
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There is a simple, but extremely useful condition for showing that a multiplier op-
erator is bounded on L?. Recall that in Exercise 1.3 we showed that a linear map
T : V. — W between normed vector spaces is continuous if and only if we have the
inequality ||Tf||lw < A|f|lv for some A < co and all v € V. We introduce the operator
norm  ||T||zcv,wy which is defined by

Tv w
Tl = sup 1w
vervior 1Yl

When V = W, we will generally list the space once.

Theorem 3.7 Suppose T, is a multiplier operator given by a measurable function m.
The operator T, is bounded on L? if and only if o is in L. Furthermore, ||T,||zr2) =
lo]oo-

Proof. 1f o is in L*°, then Plancherel’s theorem implies the inequality

175 fll2 < llollcoll £ll2-

Now consider E; = {£ : |o(§)| > t} and suppose this set has positive measure. If we
choose F; C E; with 0 < m(F;) < oo and so that m is bounded on F}, then we have

1T (e N2 = EixE 2
Since we have this inequality for all ¢t < |||, we may conclude ||T,||zz2) > [|0]|co. B

Exercise 3.8 (Open.) Find a necessary and sufficient condition for T,, to be bounded
on LP.

Exercise 3.9 Fiz h € R" and suppose that 1,f(x) = f(x + h). Show that 7, is a
continuous map on S(R™) and find an extension of this operator to S'(R").

Exercise 3.10 Suppose that T,, : S(R") — S'(R"). Show that T,, commutes with
translations.

Example 3.11 If s is a real number, then we can define Jg, the Bessel potential operator
of order s by

(Jofr=(&)°F.
If s > 0, then Theorem 3.7 implies that J,f lies in L* when f is L*. Furthermore, if o
is multi-index of length |a| < s, then we have

The operator [ — 2=J.f is a multzplzer operator with symbol (i&)*/(€)*, which is
bounded. Since the symbol is bounded by 1, we know that this operator is bounded on L?.

= ClIfle
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3.3 Sobolev spaces

The Example 3.11 motivates the following definition of the Sobolev space L?*. Sobolev
spaces are so useful that each mathematician has his or her own notation for them. Some
of the more common ones are HS, W2, F3* and B5*.

Definition 3.12 The Sobolev space L**(R™) is the image of L*(R™) under the map J;.
The norm is given by

15 fll2,s = 171l

or, since Jy o J_g is the identity, we have
1fll2.s = l[J=s fll2-

Note that if s > 0, then L? C L? as observed in Example 3.11. For s = 0, we have
L3 = L?. For s < 0, the elements of the Sobolev space are tempered distributions, which
are not, in general, given by functions. The following propositions are easy consequences
of the definition and the Plancherel theorem, via Theorem 3.7.

Proposition 3.13 If s > 0 is an integer, then a function f is in the Sobolev space L**
if and only if f and all its derivatives of order up to s are in L2.

Proof. If f is in the Sobolev space L**, then f = J, o J_,f. Using the observation of
Example 3.11 that

801
f— %Jsf
is bounded on L? when |a| < s, we conclude that
12 flle = o e J-ef s < CIl- = I
Ore 2 — Oxe s —s 2 = -5 2 — 2,8

If f has all derivatives of order up to s in L?, then we have that there is a finite
constant C' so that

©rifEer<oa+ Z &I E)].

Since each term on the right is in L?, we have f is in the Sobolev space, L**(R"). 1
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The characterization of Sobolev spaces in the above theorem is the more standard
definition of Sobolev spaces. It is more convenient to define a Sobolev spaces for s
a positive integer as the functions which have (distributional) derivatives of order less
or equal s in L? because this definition extends easily to give Sobolev spaces on open
subsets of R™ and Sobolev spaces based on LP. The definition using the Fourier transform
provides a nice definition of Sobolev spaces when s is not an integer.

Proposition 3.14 Ifs > 0,0 < |a| < s, and f € L*(R"), then 9% f |0z is in L>~*(R")
and

i
ore

2.6 < I fll2-

Proof. According to Definition 3.12, it suffices to show that JS% lies in L2. But

o°f . _ ()"

(Js Oz J= (x)®

f(€).

Since (i€)*/{€)* is bounded by one, it is easy to see the right-hand side lies in L? and
then Theorem 3.7 implies that Js% lies in L2. 1

Exercise 3.15 Show that for all s in R, the map

o~ f
oxe

f—
maps L>® — L%5~lel

Exercise 3.16 Show that L*>~* is the dual of L**. More precisely, show that if X : L*»* —
C is a continuous linear map, then there is a distribution u € L*~* so that

for each f € S(R™). Hint: This is an easy consequence of the theorem that all continuous
linear functionals on the Hilbert space L* are given by f — [ fg.



Chapter 4

Interpolation of operators

In the section, we will say a few things about the theory of interpolation of operators.
For a more detailed treatment, we refer the reader to the book of Stein and Weiss [31]
and the book of Bergh and Lofstrom [5].

An interpolation theorem is the following type of result. If T"is a linear map which is
bounded ! on X and X;, then T is bounded on X; for ¢ between 0 and 1. It should not
be clear what we mean by “between” when we are talking about pairs of vector spaces.
In the context of LP spaces, L9 is between LP and L" will mean that ¢ is between p and
r.

For these results, we will work on a pair of o-finite measure spaces (M, M, ) and

(N, N, v).

4.1 The Riesz-Thorin theorem

We begin with the Riesz-Thorin convexity theorem.

Theorem 4.1 Let p;, q;, j = 0,1 be exponents in the range [1,00]. If T is a linear
operator defined (at least) on simple functions in L'(M) into measurable functions on N
that satisfies

1T Flla; < Al Fllp-
If we define p; and q; by
1 1—-1 t 1 1—-t t
— = +— and — = +—,
Dt Do 4! 4t 4o 41

LA linear map T : X — Y is bounded as a map from the normed vector space X to Y if the inequality
ITflly < C|fllx holds. The least constant C' for which this inequality holds is called the operator norm
of T

31
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then we have that
1T fllge < Aell £1lp,-

The operator norm, A, satisfies A, < Ay 'At. If py < oo, then we have that T extends
to a bounded operator operator T : LP*(M) — L% (N).

Before giving the proof of the Riesz-Thorin theorem, we look at some applications.

Proposition 4.2 (Hausdorff-Young inequality) The Fourier transform satisfies for 1 <
p<2

1f 1l < o) £l

Proof. Proposition 1.2 tells us that the Fourier transform maps L' to L and Plancherel’s
theorem, Theorem 3.2 tells us that the Fourier transform maps L? into itself. Using the
Riesz-Thorin Theorem, Theorem 4.1 gives that the Fourier transform satisfies

1 lla: < 0211 f |1

with 1/p; = (1 —t)+t/2 and 1/q; = /2,0 <t < 1. If we express t and ¢ in terms of p;
to obtain t = 2/p; and 1/¢ = 1/p, to give the desired result. 1

The next result appeared as an exercise when we introduced convolution.

Proposition 4.3 (Young’s convolution inequality) If f € LP(R") and g € L4(R"), 1 <
p,q,m < 00 and

then
If = gllr < 1f1lpllglls-

Proof. We fix p, 1 < p < o0, and let f € LP(R"™). We will apply Theorem 4.1 to the
map g — f x g. Our endpoints are Holder’s inequality which gives

[f* g(@)] < (1 £ 1o llglly

and thus ¢ — f*g maps L” (R™) to L>°(R"™) and the simpler version of Young’s inequality
which tells us that if ¢ is in L!, then

1F* glls < W[ Fllpllglh-
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Thus g — f * g also maps L! to LP. Thus, this map also takes L% to L"t where
11—t 1 11—t t
—=—+t(1l—-—-) and —=—+ —.

a 1 p Tt p &

If we subtract the definitions of 1/r; and 1/¢;, then we obtain the relation

Ty qt P'

The condition ¢ > 1 is equivalent with ¢ > 0 and r» > 1 is equivalent with the condition
t < 1. Thus, we obtain the stated inequality for precisely the exponents p, ¢ and r in the
hypothesis. 1

Exercise 4.4 The simple version of Young’s inequality used in the proof above can be
proven directly using Holder’s inequality. A proof can also be given which uses the Riesz-
Thorin theorem. To do this, use Tonelli’s and then Fubini’s theorem to establish the
inequality

1f gl < I f1l:llglls-

The other endpoint is Holder’s inequality:

1 * gl < [[fll2l[gllo-

Then, apply Theorem 4.1 to the map g — f * g.

Below is a simple, useful result that is a small generalization of the simple version of
Young’s inequality.

Exercise 4.5 a) Suppose that K : R" x R" — C is measurable and that

/ |K(z,y)|dy < My

and
/ |K(x,y)| dx < M.
Show that
Tf(z)= | K(z,y)f(y)dy

Rn
defines a bounded operator T' on LP and

1 /
ITf]l, < MYPMYP | £]],.
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Hint: Show that M is an upper bound for the operator norm on L' and My is an upper
bound for the operator norm on L> and then interpolate with the Riesz-Thorin Theorem,
Theorem /.1.

b) Use the result of part a) to provide a proof of Young’s convolution inequality

17 glly < W[ Fllllgllp-

To do this, write f * g(x) = [g. f(x —y)g(y) dy and then let K(x,y) = f(z —y).
Our next step is a lemma from complex analysis, that is called the three lines theorem.
This is one of a family of theorems which state that the maximum modulus theorem

continues to hold in unbounded regions, provided we put an extra growth condition at
infinity. This theorem considers analytic functions in the strip {z : a < Rez < b}.

Lemma 4.6 (Three lines lemma) If f is analytic in the strip {z: a < Rez < b} and f
is bounded and continuous in the strip {z :a < Rez < b}. Define

M, = sup |f(a+ it)| and M, =sup|f(b+ it)|,

then

b—x T—a
|[f(x+iy)| < Ma™ M.

zt+iy—b a—(z+iy)

Proof. We consider f.(z + iy) = e“@H®)” f(x + iy)M, "° M, *=¢ for e > 0. This
function satisfies

fla+iy)| <e  and  [f(b+iy)| < e

and
lim sup |f(z+iy)| =0.

y—Foo a<z<b

Thus by applying the maximum modulus theorem on sufficiently large rectangles, we can
conclude that for each z € S,

|£.(2)] < max(e®, ).

Letting € — 0" implies the Lemma. 1
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Exercise 4.7 If instead of assuming that f is bounded, we assume that
[f(@ + iy)] < M

for some M > 0, then the above Lemma holds and with the same proof. Show this. What
is the best possible growth condition for which the above proof works? What is the best
possible growth condition? See [28].

The proof of the Riesz-Thorin theorem relies on constructing the following family of
simple functions.

Lemma 4.8 Let pg, p1 and p with py < p < p1 be given. Consider s = Z}]=1 aja;xg; be
a simple function with o are complex numbers of length 1, |a;| =1, a; > 0 and {E;} is
a pairwise disjoint collection of measurable sets where each is of finite measure. Suppose

|sl|, = 1. Let
I 1-=z z

D Po p1
and define

J
_ p/pz
S, = E O./j(lj XEJ
Jj=1

This family satisfies
I8:]lppe. =1, for 0 <Rez < 1.

Proof. We have that

J
/M soes dp = 3 (B,
1

j:
1
Exercise 4.9 State and prove a similar lemma for the family of Sobolev spaces. Suppose
that u lies in L2(R™) with so < s < sy and |jul|;2 = 1. Let sy = (1 —t)so + ts1 and find
a family of distributions u, so that
||uz||LgR =1, 0<t<1
This family will be analytic in the sense that if f € S(R™), then u.(f) is analytic.

We are now ready to give the proof of the Riesz-Thorin theorem, Theorem 4.1.
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Proof of Riesz-Thorin theorem. We are now ready to give the proof of the Riesz-Thorin
theorem, Theorem 4.1. We fix a p = py,, 0 < ¢y < 1 and consider simple functions s on
M and s on N which satisfy [|s||,, = 1 and ||5’Hq20 = 1. In the case that p;, < oo and
G, < 00, we may let s, and s/, be the families from Lemma 4.8 where s, is constructed
using p;, j = 0,1 and s/, is constructed using the exponents ¢}, j = 0, 1.

According to our hypothesis,

o(:) = [ ST (a) dvla)
N
is an analytic function of z. Also, using Lemma 4.8 and the assumption on 7',
sup [¢(j + iy)| < Aj, J=0,1
yeER
Thus by the three lines theorem, Lemma 4.6, we can conclude that
\/S’Ts du| < Ay~ AL,

Since, s is an arbitrary simple function with norm 1 in L7, we can conclude that
1—t t
||TS||Qt0 < Ap AR

Finally, since simple functions are dense in LP*, we may take a limit to conclude that T
can be extended to all of L” and is bounded.

In the case that p,, = 0o, then we have that py = p; = oco. If ¢;, < oo, we may still use
the above proof with s, constant to conclude that 7" maps into L%. If o = q¢1 = q, = 1
and pg < p1, we may again adapt the above proof to show T maps LP% into LP.

As long as p; < oo, simple functions are dense in LP* and it is a standard fact that
we may extend T to all of LPt. 1

The next exercise may be used to carry the extension of T' from simple functions to
all of LP.

Exercise 4.10 Suppose T' : A — Y is a map defined on a subset A of a metric space
X into a metric space Y. Show that if T is uniformly continuous, then T" has a unique
continuous extension T : A — Y to the closure of A, A. If in addition, X is a vector
space, A is a subspace and T is linear, then the extension is also linear.

Exercise 4.11 Show that if T is a linear map (say defined on S(R™)) which maps L3,
into L7 for j = 0,1, then T maps L3, into L7, for 0 <t <1, where s; = (1 —t)so + ts
and ry = (1 —t)rg + try.
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4.2 Interpolation for analytic families of operators

The main point of this section is that in the Riesz-Thorin theorem, we might as well
let the operator T" depend on z. This is a very simple idea which has many clever
applications.

I do not wish to get involved the technicalities of analytic operator valued functions.
(And am not even sure if there are any technicalities needed here.) If one examines the
above proof, we see that the hypothesis we will need on an operator T, is that for all sets
of finite measure, £ C M and ' C N, we have that

Z—>/NXETz(XF) dv (4.12)

is an analytic function of z. This hypothesis can often be proven by using Morera’s
theorem which replaces the problem of determining analyticity by the simpler problem
of checking if an integral condition holds. The integral condition can often be checked
with Fubini’s theorem.

Theorem 4.13 (Stein’s interpolation theorem) For z in S = {z : 0 < Rez < 1}, let
T, be a family of linear operators defined simple functions for which we have that the
function in 4.12 is bounded and analytic in S. We assume that for j = 0,1, T};, maps
LPi(M) to L9(N). Also assume that 1 < py < py < oo. We let p, and g have the
meanings as in the Riesz-Thorin theorem and define

My = sup || Te1y |
yeER

where ||Ty4iy|| denotes the norm of Ty as an operator from LP*(M) to L%(N). We
conclude that T, maps LP* to L and we have

M, < My~' M.
The proof of this theorem is the same as the proof of the Riesz-Thorin theorem.

Exercise 4.14 (Interpolation with change of measure) Suppose that T is a linear map
which which maps LPi(dp) into L% (w;dv) for j = 0,1. Suppose that wy and wy are two
non-negative functions which are integrable on every set of finite measure in N. Show
that T maps LP*(dp) into L%(w;) for 0 < t < 1. Here, q; and p; are defined as in the
Riesz-Thorin theorem and w; = wy ™~ 'wt.

Exercise 4.15 Formulate and prove a similar theorem where both measures p and v are
allowed to vary.
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4.3 Real methods

In this section, we give a special case of the Marcinkiewicz interpolation theorem. This
is a special case because we assume that the exponents p; = ¢; are the same. The full
theorem includes the off-diagonal case which is only true when ¢ > p. To indicate the
idea of the proof, suppose that we have a map T which is bounded on LP° and LP'. If we
take a function f in LP, with p between py < p < p;, then we may truncate f by setting

= { g m § ;\ (4.16)

and then f* = f — f\. Since f* is L? and fy is in LP', then we can conclude that
Tf = Tfy+ Tf" is defined. As we shall see, if we are clever, we can do this splitting
in such a way to see that not only is T'f defined, but we can also compute the norm of
Tf in LP. The theorem applies to operators which are more general than bounded linear
operators. Instead of requiring the operator 7" to be bounded, we require the following
condition. Let 0 < g < oo and 0 < p < oo we say that T is weak-type p,q if there exists
a constant A so that

u({z |Tf() > A}) < (%) |

If ¢ = 0o, then an operator is of weak-type p, oo if there exists a constant A so that

1T flloo < Al

We say that a map T is strong-type p,q if there is a constant A so that
ITfllq < Allfllp-

For linear operators, this condition is the same as boundedness. The justification for
introducing the new term “strong-type” is that we are not requiring the operator T' to
be linear.

Exercise 4.17 Show that if T is of strong-type p,q, then T is of weak-type p,q. Hint:
Use Chebyshev’s inequality.

The condition that 7' is linear is replaced by the condition that T is sub-linear. This
means that for f and g in the domain of T', then

T(f +9)(@)| < |Tf(@)] + [Tg(x)]

The proof of the main theorem will rely on the following well-known representation
of the LP norm of f.
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Lemma 4.18 Let p < oo and f be measurable, then

||f||£—p/ooou({w @) > e 2.

Proof. Tt is easy to see that this holds for simple functions. Write a general function as
an increasing limit of simple functions. 1

Our main result is the following theorem:

Theorem 4.19 Let 0 < pg < p1 < o0 for 7 = 0,1 and let T take measurable functions
on M to measurable functions on N. Assume also that T is sublinear and the domain of
T is closed under taking truncations. If T is of weak-type p;,p; for j = 0,1, then T is of
strong-type py, pr for 0 <t <1 and we have for py < p < p1, that when p; < 0o

AP

bAg n A 1/
Tfll, <2 + Pl fllp-
1Tl (p_pO pl_p) £l

When py = oo, we obtain

APO
ITHP < (04 A2 jj R

Proof. We first consider the case when p; < oo We fix p = p; with 0 < t < 1, choose
f in the domain of T" and let A > 0 . We write f = f\ + f* as in (4.16). Since T is
sub-linear and then weak-type p;, p;, we have that

V(o [Tf@)] > 2)) < wl{e: ITA@] > M) +ol{e: [THE)] > AD
(S (A1) o)

We use the representation of the LP-norm in Lemma 4.18, the inequality (4.20) and the
change of variables 2\ — A to obtain

IN

2T < Appo / / pl{w |2 @)] > rhrm w2

aom [ [ utte 1) > e Ten

Note that the second integral on the right extends only to A since f) satisfies the inequality
|fa] < A. We consider the second term first. We use that p({z : |fi(x)] > 7}) < p({z :
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|f(z)] > 7}) and thus Tonelli’s theorem gives the integral in the second term is bounded
by

o / Tl @) > ) / Ty A s / e @) > e

b1 P
= . 4.22
ps 11 (1.22)

We now consider the first term to the right of the inequality sign in (4.21). We observe
that when 7 > X\, u({x : |fA(x)] > 7}) = p({z : |f(x)| > 7}), while when 7 < \, we have

p({x : [fAx)] > 7)) = p({z : |f(x)| > A\}). Thus, we have
d\

ppo/o /0 u({x: |f>‘(x)| > T})Tpod_:)\p—mT

> = pOdT P*poﬁ
= [ i@ > e TS

[l @) > e

_ Po p
= (p p + DISIE- (4.23)

- F0

Using the estimates (4.22) and (4.23) in (4.21) gives

pAp p A
TrP < 2° + fIP.
T £ ( i pl_p)H 15

Which is what we hoped to prove.
Finally, we consider the case p; = oco. Since T is of type 0o, 0o, then we can conclude
that, with fy as above, v({z : |T'f\(z)| > A1A}) = 0. To see how to use this, we write
v({z: |Tf(x)] > 1+ A)AY) < v({z: [T ()] > A) +v({z: [THi(@)] > AiA})
= v({z:|Tf (@) > A}).
Thus, using Lemma 4.18 that T is of weak-type pg, po, and the calculation in (4.22) we
have

<[ dr .. dA\
(1+A)P[Tflp = Agoppg/ / p({z: | (2)| > T})TPOT)\p pOT
0 Ja

Abop
P —Do

IA

LF115-



Chapter 5

The Hardy-Littlewood maximal
function

In this chapter, we introduce the Hardy-Littlewood maximal function and prove the
Lebesgue differentiation theorem. This is the missing step of the Fourier uniqueness
theorem in Chapter 1.

Since the material in this chapter is familiar from real analysis, we will omit some of
the details. In this chapter, we will work on R™ with Lebesgue measure.

5.1 The LP-inequalities

We let x = nxp,(0)/wn—1 be the characteristic function of the unit ball, normalized so
that [ xdz =1 and then we set x,(z) = r~"x(z/r). If f is a measurable function, we
define the Hardy-Littlewood mazximal function by

M f(x) = sup | f| * xr ().

r>0

Here and throughout these notes, we use m(F) to denote the Lebesgue measure of a set
E.

Note that the Hardy-Littlewood maximal function is defined as the supremum of
an uncountable family of functions. Thus, the sort of person who is compulsive about
details might worry that M f may not be measurable. The following lemma implies the
measurability of M f.

Lemma 5.1 If f is measurable, then M f is lower semi-continuous.

41
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Recall that an extended real-valued function f : R™ — [—o00,00] is lower semi-
continuous if and only if the sets {x : f(z) > A} are open for all \.

Proof. If M f(x) > A, then we can find a radius r so that

1
(B, (@) /BM (@)l dy > A

Since this inequality is strict, for s slightly larger than r, say r + 9 > s > r, we still have

1
(B, (@) /M) @)l dy > A

But then by the monotonicity of the integral,
Mf(z) > A

if Bs(z) D B.(z). That is if |z — 2| < §. We have shown that the set {x : M f(z) > A} is
open. 1

Exercise 5.2 If {f, : « € I} is a family of continuous real valued functions on R™ show
that

g(w) = sup fa(x)

ael

18 lower semi-continuous.

If f is locally integrable, then y, % f is continuous for each r > 0 and the previous
exercise can be used to establish the lower semi-continuity of M f. Our previous lemma
also applies to functions for which the integral over a ball may be infinite.

We pause briefly to define local integrability. We say that a function is locally inte-
grable if it is in Lj,.(R™). We say that a function f is L} (R") if f € LP(K) for each
compact set K. One may also define a topology by defining the semi-norms,

on(f) = 1 fllLr(B.(0)) forn=1,2....

Given this countable family of semi-norms it is easy to define a topology by following the
procedure we used to define a topology on the Schwartz space (see exercise 2.10).

Exercise 5.3 Show that a sequence converges in the metric for Li (R™) if and only if
the sequence converges in LP(K) for each compact set K.
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Exercise 5.4 Let f = x(-11) on the real line. Show that Mf > 1/|x| if |z| > 1.
Conclude that M f is not in L'.

Exercise 5.5 Let f(x) = x(©0,1/2))(z)z~(log(x)) 2. Show that there is a constant ¢ > 0
so that c
Mf(z) > —
2 loa(a)
Remark: This ezercise shows that there is a function f in L' for which f* is not
locally integrable.

if0<x<1/2.

Exercise 5.6 Show that if M f is in L*(R"), then f is zero.

Exercise 5.7 Let {E,}acr be a collection of measurable sets. Suppose there is a constant
co so that for each ov we may find a ball B,(0) so that E, C B,(0) and so that m(E,) >
com(B,(0)). Define a mazimal function by

1

N (@) = sup{s [ S+ )y ae )

a) Show that there is a constant so that
Nf(z) < CMf(z).

b) Show that if {E.} is the collection of all cubes containing 0, then we may find a
constant C' depending only on dimension so that

CINf(x) < Mf(x) < CM f(x).

We will show that the Hardy-Littlewood maximal function is finite a.e. when f is in
L'(R™). This is one consequence of the following theorem.

Theorem 5.8 If f is measurable and \ > 0, then there exists a constant C = C(n) so
that

mlfe [MF() > ) < S / (@) da.

n

The observant reader will realize that this theorem asserts that the Hardy-Littlewood
maximal operator is of weak-type 1,1. It is easy to see that it is sub-linear and of weak
type oo, 00 and thus by the diagonal case of the Marcinkiewicz interpolation theorem,
Theorem 4.19, we can conclude the maximal operator is of strong-type p, p.

The proof of this theorem depends on a Lemma which allows us to extract from a
collection of balls, a sub-collection whose elements are disjoint and whose total measure
is relatively large.
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Lemma 5.9 Let f =1/(2-3"). If E is a measurable set of finite measure in R and we
have a collection of balls B = {Ba}aca so that E C UB,, then we can find a sub-collection
of the balls { By, ..., By} which are pairwise disjoint and which satisfy

Proof. We may find K C F which is compact and with m(K) > m(E)/2. Since K is
compact, there is a finite sub-collection of the balls B; C B which cover E. We let B; be
the largest ball in B; and then we let By be the balls in B; which do not intersect Bj.
We choose Bs to be the largest ball in By and continue until By is empty. The balls
By, Bs, ..., By are disjoint by construction. If B is a ball in By then either B is one of
the chosen balls, call it Bj, or B was discarded in going from B;, to Bj 41 for some jo.
In either case, B intersects one of the chosen balls, Bj,, and B has radius which is less
than or equal to the radius of Bj,. Hence, we know that

K C Upes, B C UL3B;

where if B; = B,(x), then 3B; = Bs,(z). Taking the measure of the sets K and U3B;,
we obtain

Now, we can give the proof of the weak-type 1,1 estimate for M f in Theorem 5.8.

Proof.  (Proof of Theorem 5.8) We let E\ = {z : M f(z) > A} and choose a measurable
set F C F)\ which is of finite measure. For each z € F), there is a ball B, so that

m(B,)"! /B f(2) dx > A (5.10)

We apply Lemma 5.9 to the collection of balls B C {B, : x € E'} to find a sub-collection
{B1,...,Bn} C B of disjoint balls so that

E) < 1
e > () < AR
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The first inequality above is part of Lemma 5.9, the second is (5.10) and the last holds
because the balls B; are disjoint. Since F is an arbitrary, measurable subset of Fy of
finite measure, then we can take the supremum over all such £ and conclude E) also

satisfies 5. 3n
A
1

Frequently, in analysis it becomes burdensome to keep track of the exact value of
the constant C' appearing in the inequality. In the next theorem and throughout these
notes, we will give the constant and the parameters it depends on without computing its
exact value. In the course of a proof, the value of a constant C' may change from one
occurrence to the next. Thus, the expression C' = 2C' is true even if C # 0!

Theorem 5.11 If f is measurable and 1 < p < oo, then there ezists a constant C' = C(n)

Cp
M fll, < FWHp-

Proof. This follows from the weak-type 1,1 estimate in Theorem 5.8, the elementary
inequality that || M f||o < ||f]|cc and Theorem 4.19. The dependence of the constant can
be read off from the constant in Theorem 4.19. 1

5.2 Differentiation theorems

The Hardy-Littlewood maximal function is a gadget which can be used to study the
identity operator. At first, this may sound like a silly thing to do—what could be easier
to understand than the identity? We will illustrate that the identity operator can be
interesting by using the Hardy-Littlewood maximal function to prove the Lebesgue dif-
ferentiation theorem—the identity operator is a pointwise limit of averages on balls. In
fact, we will prove a more general result which was used in the proof of the Fourier in-
version theorem of Chapter 1. This theorem amounts to a complicated representation of
the identity operator. In addition, we will introduce approximations of the zero operator,
f — 0in a few chapters.

The maximal function is constructed by averaging using balls, however, it is not hard
to see that many radially symmetric averaging processes can be estimated using M. The
following useful result is lifted from Stein’s book [29]. Before stating this proposition,
given a function ¢ on R", we define the non-increasing radial majorant of ¢ by

¢*(z) = sup [o(y)l.

ly[>||
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Proposition 5.12 Let ¢ be in L' and f in LP, then

suplor + 1) < [ 6"(a) daM f()
Proof. 1t suffices to prove the inequality

b, % f(z) < / 6(x) dzM f(x)

when ¢ is non-negative and radially non-increasing and thus ¢ = ¢* a.e. Also, we may
assume f > 0. We begin with the special case when ¢(x) = >, a;xp,,(0)(¢) and then

< rMF() Y am(By, (@)

~ Mf() / ¢,J ae.

The remainder of the proof is a picture. We can write a general, non-increasing, radial
function as an increasing limit of sums of characteristic functions of balls. The mono-
tone convergence theorem and the special case already treated imply that ¢, x f(z) <
M f(z) [ ¢ dz and the Proposition follows. 1

[xI
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Finally, we give the result that is needed in the proof of the Fourier inversion theorem.
We begin with a Lemma. Note that this Lemma suffices to prove the Fourier inversion
theorem in the class of Schwartz functions. The full differentiation theorem is only needed
when f isin L!.

Lemma 5.13 If f is continuous and bounded on R™ and ¢ € L*(R™), then for all z,

lim 6, < fla) = £(a) [ o

Proof. Fix z in R™ and n > 0. Recall that [ ¢, is independent of € and thus we have

64 1(0) = (@) [ o) do = [ 00)(1(w~9)  fa)) dy

Since f is continuous at x, there exists § > 0 so that |f(x —y) — f(z)| < nif |y| <. In
the last integral above, we consider |y| < § and |y| > § separately. We use the continuity
of f when |y| is small and the boundedness of |f| for |y| large to obtain:

. d . d 2| fllso . d
60 f(x) /¢ w|<n/{yyl<5}\¢( Y dy + 21| /{ng)r y

The first term on the right is finite since ¢ is in L' and in the second term, a change of
variables and the dominated convergence theorem implies we have

lim |pe(y)| dy = lim [9(y)| dy = 0.

+ +
=07 J {y:fy|>6} =0T Jyily|>5/e}

Thus, we conclude that

limsups, « f(2) ~ £(2) [ 6(w)dy| < [ Io]dy.
e—0t
Since n > 0 is arbitrary, the conclusion of the lemma follows. 1

Theorem 5.14 If ¢ has radial non-increasing magjorant in L', and f is in LP for some
p, 1 < p < oo, then for a.e. x € R,

lim 6% f(2) /m
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Proof. The proof for p =1, 1 < p < 0o and p = oo are each slightly different.

Let 0(f)(xz) = limsup, g+ |¢e * f(z) — f(z) [ ¢|. Our goal is to show that 0(f) =
a.e. Observe that according to Lemma 5.13, we have if ¢ is continuous and bounded,
then

0(f) =0(f —9)-
Also, according to Proposition 5.12, we have that there is a constant C' so that with

=]l
0(f —9)(z) <|f(z) — g(a)|] + CM(f — g)(x). (5.15)

If fisin L' and X\ > 0, we have that for any bounded and continuous ¢ that

m({z:0(0)(@) > A < m{e:0(f - g)(@) > M2} + m({x : 111 () — glx)] > A/2})
C
< S 1) - gz
R?’L

The first inequality uses (5.15) and the second uses the weak-type 1,1 property of the
maximal function and Tchebishev. Since we can approximate f in the L' norm by
functions g which are bounded and continuous, we conclude that m({z : 6(z) > A}) = 0.
Since this holds for each A > 0, then we have that m({z : (z) > 0}) =0

If fisin LP, 1 < p < oo, then we can argue as above and use the that the maximal
operator is of strong-type p, p to conclude that for any continuous and bounded g,

m({z - 0(z) > A}) < /|f (@) d.

Again, continuous and bounded functions are dense in LP, if p < oo so we can conclude
6(f) =0 a.e.

Finally, if p = oo, we claim that for each natural number, n, the set {z : 6(f)(z) >
0 and |z| < n} has measure zero. This implies the theorem. To establish the claim,
we write f = xB,,0)f + (1 = XByn(0))f = fi + fo. Since f; is in LP for each p finite,
we have 0(f;) = 0 a.e. and it is easy to see that 0(f2)(z) = 0 if |x| < 2n. Since
O(f)(x) <O(f1)(z)+ 0(f2)(z), the claim follows. 1

The standard Lebesgue differentiation theorem is a special case of the result proved
above.

Corollary 5.16 If f is in L} (R™), then

loc

1

flz) = Tlg(l)l (B, (z)) /BT(:E) f(y) dy.
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Corollary 5.17 If f is in L] (R™), then there is a measurable set E, with R" \ E of

loc
Lebesgue measure 0 and so that

1

lim ————— — ) dy — e E.
5 B 10 SN0,

We omit the proof of this last Corollary.

The set E from the previous theorem is called the Lebesgue set of f. It is clear from
the definition that the choice of the representative of f may change F by a set of measure
ZEro.
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Chapter 6

Singular integrals

In this section, we will introduce a class of symbols for which the multiplier operators
introduced in Chapter 3 are also bounded on LP. The operators we consider are modeled
on the Hilbert transform and the Riesz transforms. They were systematically studied
by Calderén and Zygmund in the 1950’s and are typically called Calderén-Zygmund
operators. These operators are (almost) examples of pseudo-differential operators of
order zero. The distinction between Calderén Zygmund operators and pseudo-differential
operators is the viewpoint from which the operators are studied. If one studies the
operator as a convolution operator, which seems to be needed to make estimates in
L? then one is doing Calderén Zygmund theory. If one is studying the operator as a
multiplier, which is more efficient for computing inverses and compositions, then one is
studying pseudo-differential operators. One feature of pseudo-differential operators is
that there is a general flexible theory for variable coefficient symbols. Our symbols will
only depend on the frequency variable &.

6.1 Calderén-Zygmund kernels

In this chapter, we will consider linear operators 7' : S(R™) — S’(R™). In addition, we
assume that the operator 7" has a kernel K : R" x R" — C which gives the action of
T away from the diagonal. The kernel K is a function which is locally integrable on
R" x R"\ {(z,y) : x = y}. That K gives the action of T" away from the diagonal means
that that for any two functions f and g in D(R™) and which have disjoint support, we
have that

Tf(g) = o K(z,y)f(y)g(x) dv dy. (6.1)

ol
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Note that the left-hand side of this equation denotes the distribution 7T'f paired with the
function g. We say that K is a Calderon-Zygmund kernel if there is a constant C'x so
that K satisfies the following two estimates:

Ck

|K(z,y)| < F— (6.2)
Ck
VoK (z,y)| + [V, K(z,y)| < o=y (6.3)

Exercise 6.4 Show that the kernel is uniquely determined by the operator.
Exercise 6.5 What is the kernel of the identity operator?

Exercise 6.6 Let o be a multi-index. What is the kernel of the operator

9,
ozxe’

To =
Conclude that the operator is not uniquely determined by the kernel.

If an operator T has a Calderén-Zygmund kernel K as described above and T is
L? bounded, then T is said to be a Calderon-Zygmund operator. In this chapter, we
will prove two main results. We will show that Calderén-Zygmund operators are also
LP-bounded, 1 < p < oo and we will show that a large class of multipliers operators are
Calderén-Zygmund operators.

Since Calderén-Zygmund kernels are locally bounded in the complement of {(z,y) :
r =y}, if f and g are L? and have disjoint compact supports, then (6.1) continues to
hold. To see this we approximate f and g by smooth functions and note that we can
arrange that we only increase the support by a small amount when we approximate.

Exercise 6.7 Suppose that Q is a smooth function near the sphere S"~! C R", then
show that
T —y 1

Koy =N D=y

1s a Calderon-Zygmund kernel.

Exercise 6.8 Ifn >3 and j,k are in {1,...,n}, then

02 1
0z ;0xy, | — y|*—?
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1s a Calderon-Zygmund kernel. Of course, this result is also true for n = 2, but it is not
very interesting.
In two dimensions, show that for any j and k,

82
1 _
5,05 %8 |z =yl

1s a Calderon-Zygmund kernel.

Exercise 6.9 Let z = 21 + izy give a point in the complex plane. Show that the kernel

gives a Calderon-Zygmund kernel on R2.

Theorem 6.10 If T is a Calderon-Zygmund operator, then for 1 < p < oo there is a
constant C' so that

1T £l < CllFllp-

The constant C' < Amax(p,p') where A depends on the dimension n, the constant in the
estimates for the Calderén-Zygmund kernel, and the norm of T as an operator on L?.

The main step of the proof is to prove a weak-type 1,1 estimate for T and then to
interpolate to obtain the range 1 < p < 2. The range 2 < p < oo follows by applying the
first case to the adjoint of T

Exercise 6.11 Let H be a Hilbert space with inner product {,) If T : H — H is a bounded
linear map on a Hilbert space, then the map x — (T'x,y) defines a linear functional on
H. Hence, there is a unique element y* so that (Tx,y) = (z,y*).

a) Show that the map y — y* = T*y is linear and bounded. The map T* is called the
adjoint of the operator T.

b) Suppose now that T is bounded on the Hilbert space L?, and that, in addition to
being bounded on L?, the map T satisfies | T f|l, < Allfll,, say for all f in L*. Show that

17 Fllr < ALl

Exercise 6.12 [fT : H — H is a bounded linear operator on a Hilbert space, show that
we have || Tz = [T\l -
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Exercise 6.13 IfT is a Calderon-Zygmund operator with kernel K, show that T™ is also
a Calderon-Zygmund operator and that the kernel of T™ is

K*(z,y) = K(y, v).

Exercise 6.14 IfT,, is a multiplier operator with bounded symbol, show that the adjoint
s a multiplier operator with symbol m, T\ = T

Our next theorem gives a weak-type 1,1 estimate for Calderén-Zygmund operators.

Theorem 6.15 If T is a Calderén-Zygmund operator, f is in L*(R™) and X\ > 0, then

mife: (7@ =) < 5 [ If@)]d.

This result depends on the following decomposition lemma for functions. In this
Lemma, we will use cubes on R™. By a cube, we mean a set of the form @Q,(z) = {y :
|z; — y;| < h/2}. We let Dy be the mesh of cubes with side-length 1 and whose vertices
have integer coordinates. For k an integer, we define Dy to be the cubes obtained by
applying the dilation  — 2*x to each cube in Dy. The cubes in D, have side-length 2*
and are obtained by bisecting each of the sides of the cubes in Dy_;. Thus, if we take
any two cubes ) and @), in D = U, Dy, then either one is contained in the other, or the
two cubes have disjoint interiors. Also, given a cube ), we will refer to the 2" cubes
obtained by dividing ) as the children of ). And of course, if () is a child of @), then @)’
is a parent of (). The collection of cubes D will be called the dyadic cubes on R™.

Lemma 6.16 (Calderén-Zygmund decomposition) If f € L*(R™) and A\ > 0, then we
can find a family of cubes {Qr}7, with disjoint interiors so that |f(z)] < X a.e. in
R™ \ UxQs and for each cube we have

1
A< —/ f(2)] dz < 2"\,
m(Qk) Qk
As a consequence, we can write f = g + b where |g(z)] < 2"\ a.e. and b = > by
where each by is supported in one of the cubes Qy, each by has mean value zero fbk =0
and satisfies ||bg||1 < 2ka |f| dz. The function g satisfies ||g|l1 < ||f]|1

Proof. Given f € L' and A > 0, we let £ be the collection of cubes ) € D which satisfy
the inequality

@/@U(mﬂdm Y (6.17)
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Note that because f € L', if m(Q)~!||f|l; < A, then the cube @ will not be in £. That
is £ does not contain cubes of arbitrarily large side-length. Hence, for each cube @’ in &,
there is a largest cube @) in £ which contains )’. We let these maximal cubes form the
collection M = {Qy}, which we index in an arbitrary way. If @)} is the parent of some
Qr in M, then Q) is not in £ and hence the inequality (6.17) fails for @Q}. This implies
that we have

/\NMMS/INMSTM%M- (6.18)
Qk %

Hence, the stated conditions on the family of cubes hold.
For each selected cube, Qy, we define by = (f — m(Qy)~ ka x)dx)xg, on Qr and
zero elsewhere. We set b = >, b, and then g = f —b. It is clear that [ br, = 0. By the

triangle inequality,
[m@lae <2 [ 1w
Qk

It is clear that ||g||1 < ||f|lx. We verify that |g(z)| < 2"X a.e. On each cube @y, this
follows from the upper bound for the average of | f| on Q. For each x in the complement
of UpQy, there is sequence of cubes in D, with arbitrarily small side-length and which
contain z where the inequality (6.17) fails. Thus, the Lebesgue differentiation theorem
implies that |g(z)| < A a.e. 1

Our next step in the proof is the following Lemma regarding the kernel.

Lemma 6.19 If K is a Calderén-Zygmund kernel and x,y are in R™ with |z — y| < d,
then

/ |K(z,2) — K(z,y)|dz < C.
R\ Byq(x)

The constant depends only on the dimension and the constant appearing in the definition
of the Calderon-Zygmund kernel.

Proof. We apply the mean-value theorem of calculus to conclude that if y € By(z) and
z € R™\ Bgg(x), then the kernel estimate (6.3) implies
|K(2,2) = K(2,9)] < v —y| sup [V,K(z,y)| < 2" Ckla —yllz — 27" (6.20)
y€Bq(x)
The second inequality uses the triangle inequality |y — z| > |z — 2| — |y — | and then
that |z — z| — |y — 2| > | — 2|/2 if |[r — y| < d and |z — z| > 2d. Finally, if we integrate
the inequality (6.20) in polar coordinates, we find that

/ |K(z,2) — K(z,y)|dz < dCK2”+1wn_1/ r " dr = O 2w, 1.
R\ Byq(x) 2d
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This is the desired conclusion. 1
Now, we give the proof of the weak-type 1,1 estimate in Theorem 6.15.

Proof of Theorem 6.15. We may assume that f is in L' N L2. We let A > 0. We apply
the Calderén-Zygmund decomposition, Lemma 6.16 at A to write f = g +b. We have

{z:|Tf(x)] > A} C{z: |Tg(x)| > /2y U{x: |Tb(x)| > \/2}.

Using Tchebisheff’s inequality, the L?*-boundedness of T, and then that |g(z)| < 2"\ we
obtain

il Tyl > N2 < 5 [ ool de <5 [ latoldo

R"”

Finally, since ||g||; < ||f]|1, we have

m({e: [To(@)] > A/2}) < S

Now, we turn to the estimate of Tb. We let O, = UB), where each ball B, is chosen
to have center xy, the center of the cube Q) and the radius of By, is v/n multiplied by the
side-length of Q. Thus, if y € Qy, then the distance |z — y| is at most half the radius
of By. This will be needed to apply Lemma 6.19. We estimate the measure of O, using

that
C
m(0) €Y m@) <33 [ Iflde < Sisl

Next, We obtain an L' estimate for Tb;. If z is in the complement of Q, we know that
Th(x) = [ K(z,y)be(y)dy = [(K(z,y) — K(z,zx))b(y) dy where the second equality
uses that br has mean value zero. Now, applying Fubini’s theorem and Lemma 6.19, we
can estimate

/ Thy(a)| do < / be(y) K (2,y) — K(z,2,)| da dy
R"\Bj, Qk R\ B

o/@k Ibe(y)| dy < c/@k ()] dy

IN

Thus, if we add on k, we obtain

Jo, TN <3 [Tty < sl (6:21)
R™M\O R”\B,
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Finally, we estimate

m({x: Tb(z) > \/2})

IA

m(Oy) + m({x € R"\ Oy : |Tb(x)| > \/2})
C
=

IA

Where the the last inequality uses Chebishev and our estimate (6.21) for the L'-norm of
Th in the complement of O,. [

Exercise 6.22 Let () be a cube in R"™ of side-length h > 0, Q = {z : 0 < x; < h}.
Compute the diameter of Q. Hint: The answer is probably h+/n.

Proof of Theorem 6.10. Since we assume that 7" is L2-bounded, the result for 1 < p < 2,
follows immediately from Theorem 6.15 and the Marcinkiewicz interpolation theorem,
Theorem 4.19. The result for 2 < p < oo follows by observing that if 7" is a Calderén-
Zygmund operator, then the adjoint 7™ is also a Calderén-Zygmund operator and hence
T is LP-bounded, 1 < p < 2. Then it follows that T is LP-bounded for 2 < p < oc.

The alert reader might observe that Theorem 4.19 appears to give a bound for the
operator norm which grows like |p —2|7! near p = 2. This growth is a defect of the proof
and is not really there. To see this, one can pick one’s favorite pair of exponents, say
4/3 and 4 and interpolate (by either Riesz-Thorin or Marcinkiewicz) between them to
see that norm is bounded for p near 2. 1

Exercise 6.23 Suppose that T is an operator on functions on the real line that is given
off the diagonal by the kernel K(x,y) = 1/(x —y). Show that we may not have T f in L.
Hint: Let f(x) be smooth, non-negative function which is supported in (—1,1). What can
you say about T f(x) for x > 27

6.2 Some multiplier operators

In this section, we study multiplier operators where the symbol m is smooth in the
complement of the origin. For each k£ € R, we define a class of multipliers which we call
symbols of order k. We say m is symbol of order k£ if for each multi-index «, there exists
a constant C,, so that

a*m

5 ©

< Culg]lolE, (6.24)

The operator given by a symbol of order k& corresponds to a generalization of a differ-
ential operator of order k. Strictly speaking, these operators are not pseudo-differential
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operators because we allow symbols which are singular near the origin. The symbols we
study transform nicely under dilations. This makes some of the arguments below more
elegant, however the inhomogeneous theory is probably more useful.

Exercise 6.25 a) If P(£) is homogeneous polynomial of degree k, then P is a symbol of
order k.

b) The multiplier for the Bessel potential operator (1 + [£]?)™%/2 is a symbol of order
—s fors > 0. What if s <07

We begin with a lemma to state some of the basic properties of these symbols.

Lemma 6.26 a) If m; is a symbol of order k; for j = 1,2, then myms is a symbol of
order ki + ko and each constant for mymsy depends on finitely many of the constants for
my and mo.

b) If n € S(R™), then n is a symbol of order k for any k < 0.

c¢) If m is a symbol of order k, then for all € > 0, e *m(e€) is a symbol of order k
and the constants are independent of €.

d) If mj, j = 1,2 are symbols of order k, then my + mgy is a symbol of order k.

Proof. A determined reader armed with the Leibniz rule will find that these results are
either easy or false. 1

Exercise 6.27 a) Use Lemma 6.26 to show that if m is a symbol of order 0 and n €
S(R™) with n = 1 near the origin, then m.(§) = n(e€)(1 — n(&/e))m(&) is a symbol of
order 0.

b) Show that if n(0) = 1, then for each f € L*(R™) the multiplier operators given by
m and m, satisfy

lim ||Tyf — T fl2 = 0.
e—0t

c¢) Do we have lim, o+ || T}, — Ty,
as an operator on L*.

= 07 Here, ||T|| denotes the operator norm of T

Exercise 6.28 Show that if m is a symbol of order 0 and there is a 6 > 0 so that
Im(&)| > 8 for all € # 0, then m™" is a symbol of order 0.

Lemma 6.29 If m is in the Schwartz class and m is a symbol of order k > —n, then
there is a constant C' depending only on finitely many of the constants in (6.24) so that

()| < Cla| ™",
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Proof.  To see this, introduce a cutoff function 1y € D(R™) which satisfies ng(§) = 1 if
€] < 1 and no(&) = 0 if [€] > 2. Also, we set 1, = 1 —19. We write

Kj(x) = (2m) " / e, (Elxym(€) de, = 0,00.

For j = 0, the estimate is quite simple since ny(&|z|) = 0 if || > 2/|z|. Thus,

Ko() < @n) [ Jefde = Clal
€1<2/|z|

For the part near oo, we need to take advantage of the cancellation that results from

integrating the oscillatory exponential against the smooth symbol m. Thus, we write

(ix)*e™€ = a‘%emf and then integrate by parts to obtain

2 i) Koe) = | (e melahm(©)dg = (-1 [ €= nlelelim(e) de

The boundary terms vanish since the integrand is in the Schwartz class. Using the symbol
estimates (6.24) and that 7. is zero for || near 0, we have for k — |a| < —n, that

|(Z$)aKoo(x)| < O/ |§‘k—|a\ df — C|x|—n—k+|a\'
€1>1/|=|

This implies the desired estimate that | K, (z)] < Clx|™"7*. 1

We are now ready to show that the symbols of order 0 give Calderén Zygmund
operators.

Theorem 6.30 If m is a symbol of order 0, then T,, is a Calderén-Zygmund operator.

Proof. The L?-boundedness of T}, is clear since m is bounded, see Theorem 3.7. We
will show that the kernel of T}, is of the form K (z — y) and that for all multi-indices «
there is a constant C,, so that K satisfies

—K(x)| < Clz|™
The inverse Fourier transform of m, 1, is not, in general, a function. Thus, it is

convenient to approximate m by nice symbols. To do this, we let n € D(R"™) satisfy
n(x) = 1if || < 1 and n(x) = 0 if |z| > 2. We define m.(&) = n(e&)(1 — n(&/e))m(§).
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By Lemma 6.26, we see that m,. is a symbol with constants independent of €. Since
m. € S(R"), by Lemma 6.29 we have that K. = m, satisfies for each multi-index «,

[}

|axa K.(z)| < Cla| e, (6.31)

This is because the derivative of order o of K, by Proposition 1.19 is the inverse Fourier
transform of (—i&)*m.(§), a symbol of order |a|. Since the constants in the estimates are
uniform in €, we can apply the Arzela-Ascoli theorem to prove that there is a sequence
{€;} with lim; ,€; = 0 so that K, and all of its derivatives converge uniformly on
compact subsets of R" \ {0} and of course the limit, which we call K, satisfies the
estimates (6.31).

It remains to show that K (z —y) is a kernel for the operator 7;,. Let f be in S(R").
By the dominated convergence theorem and the Plancherel theorem, T}, f — T}, f in L?
as ¢ = 07. By Proposition 1.24, T,,,. f = K. f. Finally, if f and g have disjoint support,
then

[ Tut@oo)de = i [T, f@g() do

J]—00

= lim [ K (2 —y)f(y)g(z)dzdy

= /K(:v —y)f(y)g(x) dr dy.

The first equality above holds because Ty, f converges in L?, the second follows from
Proposition 1.24 and the third equality holds because of the locally uniform convergence
of K in the complement of the origin. This completes the proof that K (x —y) is a kernel
for T,,. |

We can now state a corollary which is usually known as the Mikhlin multiplier theo-
rem.

Corollary 6.32 If m is a symbol of order 0, then the multiplier operator T,,, is bounded
on LP for1 < p < oo.

We conclude with a few exercises.

Exercise 6.33 If m is infinitely differentiable in R™\ {0} and is homogeneous of degree
0, then m is a symbol of order zero.
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Exercise 6.34 We consider the symbol m(§) = —isign(§) on the real line. Let ¢ be a
smooth function which 0 ift <1 and 1 ift > 2 and set m(§) = ¢(|€|/€)(1 —p(el€]))m ().
Let H, be the multiplier operator given by H.f = (mef)v and let k. = m..

a) Show that k.(z) < C/|z].

b) Show that k. is an odd function.

c¢) Show that

1
lim k. (y) = —.
Ikl =1

d) Show that for f in S(R) and all z € R, we have

lim k. * f(z) = lim fla=y) dy.

e—0+ e—0t ly|>e Yy

Exercise 6.35 Let u be the principal value distribution on the complex plane given by

u(f) = lim (22) dz.

e—0t 2] >e z

Find 4. (I am not sure how hard this one will be, let me know if you have a good hint.)

n 92

In the next exercise, we introduce the Laplacian A =) =1 92
J

Exercise 6.36 Let 1 < p < oo, n > 3. If f € S(R™), then we can find a tempered
distribution u so that Au = f and we have the estimate

| 0%
6xj8xk

lp < Cli A1l

where the constant in the estimate C' depends only on p and n. Why is n = 2 different?
In two dimensions, show that we can construct u if f(0) = 0. (This construction can be
extended to all of the Schwartz class, but it is more delicate when f(0) # 0.)

This exercise gives an estimate for the solution of Au = f. The estimate follows
immediately from our work so far. We should also prove uniqueness: If u is a solution
of Au = 0 and wu has certain growth properties, then v = 0. This is a version of the
Liouville theorem. The above inequality is not true for every solution of Au = f. For
example, on R?, if u(x) = e®*2 then we have Au = 0, but the second derivatives are
not in any LP(R?).
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Exercise 6.37 Let O = 88—; — A be the wave operator which acts on functions of n + 1
variables, (z,t) € R" x R. Can we find a solution of Du = f and prove estimates like
those in Exercise 6.36¢ Why or why not?

Exercise 6.38 Show that if A € C is not a negative real number, the operator given by
m(&) = (A + [£]*)7! is bounded on LP for 1 < p < oo and that we have the estimate

[T fllp < Cllf -

Find the dependence of the constant on .

Using the machinery of singular integrals, we can extend our characterization of
Sobolev spaces from Chapter 3 to p # 2.

Exercise 6.39 For 1 < p < oo and k = 0,1,2,..., let LP* be the Sobolev space of
functions f so that for |a| < k, the derivatives 0° f /0x® lie in LP.
For 1 < p < 0o, show that f € LP* if and only if (1 + |£|*)*/2f) lies in LP.
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Littlewood-Paley theory

In this chapter, we look at a particular singular integral and see how this can be used
to characterize the LP norm of a function in terms of its Fourier transform. The theory
discussed here has its roots in the theory of harmonic functions in the disc or the up-
per half-plane. The expressions @), f considered below, share many properties with the
27*Vu(z’,27%) where u is the harmonic function in the upper-half plane x,, > 0 whose
boundary values are f. Recently, many of these ideas have become part of the theory
of wavelets. The operators () f decompose f into pieces which are of frequency approx-
imately 2F. A wavelet decomposition combines this decomposition in frequency with a
spatial decomposition, in so far as this is possible.

7.1 A square function that characterizes L’

We let ¢ be a real-valued function in D(R™) which is supported in {§ : 1/2 < [§| < 4}
and which satisfies Y ;- ¥x(£)? = 1 in R™\ {0} where ¢4(£) = (£/2%) and we will
call ¢ a Littlewood-Paley function. It is not completely obvious that such a function
exists.

Lemma 7.1 A Littlewood-Paley function exists.

Proof. We take a function ¢ € D(R") which is non-negative, supported in {€ : 1/2 <
|€| < 4} and which is strictly positive on {£ : 1 < |£] < 2}. We set

V(&) =)/ ( D PE/2M).

k=—00

63
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For f in LP, say, we can define Qf = ¢ * f = (wkf)'. We define the square function
S(f) by

o0

S(@) = () 1))

From the Plancherel theorem, Theorem 3.2, it is easy to see that

1£ll2 = [1SCF)l2 (7.2)

and of course this depends on the identity Y, )7 = 1. We are interested in this operator
because we can characterize the L” spaces in a similar way.

Theorem 7.3 Let 1 < p < co. There is a finite nonzero constant C' = C(p,n, ) so that
of fisin LP, then
Cy Ll S ISUHlp < Coll Flp-

This theorem will be proven by considering a vector-valued singular integral. The
kernel we consider will be

K(z,y) = (...,2"% 2z —y)),...).
Lemma 7.4 If ¢ is in S(R"), then the kernel K defined above is a Calderon-Zygmund
kernel.

Proof. We write out the norm of K

K@)l =) 22" (2@ — )P

k=—oc0

We choose N so that 2V < |z — y| < 2¥F! and split the sum above at —N. Recall that

Yisin S (an) and decays faster than any polynomial. Near 0, that is for k < —N, we
use that ¢(z) < C. For k > —N, we use that ¢ (z) < Clz|™!. Thus, we have

—-N 9]
|K(l’,y)|2 < C( Z 92nk + Z 22nk(2k+N)72(n+1)) _ C272nN.
k=—oo k=—N+1
Recalling that 2V is approximately |z — y|, we obtain the desired upper-bound for
K(z,%). To estimate the gradient, we observe that V, K (z,y) = (..., 2~ "*DE(V)((z —
y)2%),...). This time, we will need a higher power of |z| to make the sum converge.
Thus, we use that |V¢(z)| < C near the origin and |Vi)(x)| < C|z|~"~2. This gives that

-N 0o
|VK(Z‘)|2 < Of Z 92k(n+1) Z 22k(n+1)(2k+N)—2(n+2)) — (9-2N(n+1)
k=—o00 k=—N+1

Recalling that 2% is approximately |z — y| finishes the proof. 1
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Proof of Theorem 7.3. To establish the right-hand inequality, we fix N and consider
the map f — (w,Nf, . ,wa)V = Ky * f. The kernel Ky is a vector-valued function
taking values in the vector space C*¥*1. We observe that the conclusion of Lemma 6.19
continues to hold, if we interpret the absolute values as the norm in the Hilbert space
C2V+1 with the standard norm, |(z_n, ..., 2x)| = (o0 |2?)Y2.

As a consequence, we conclude that Ky * f satisfies the LP estimate of Theorem 6.10
and we have the inequality

Z Qi f1P) 21y < I1f - (7.5)

k=—

We can use the monotone convergence theorem to let N — oo and obtain the right-hand
inequality in the Theorem.

To obtain the other inequality, we argue by duality. First, using the polarization
identity, we can show that for f,g in L2,

o0

[ ¥ @n@@@eds = [ fat) ds (76)

k=—

Next, we suppose that f is L2 LP and use duality to find the L? norm of f, the identity
(7.6), and then Cauchy-Schwarz and Holder to obtain

Ifllp = sup f(x)g(x)de = sup /ZQk Qil9)(@) dz < |S(Hpl1S(9)-

lgll,r=1/R" llgllr=1

Now, if we use the right-hand inequality, (7.5) which we have already proven, we obtain
the desired conclusion. Note that we should assume g is in L?>(R") N L¥ (R™) to make
use of the identity (7.2).

A straightforward limiting argument helps to remove the restriction that f is in L?
and obtain the inequality for all f in LP. 1

7.2 Variations

In this section, we observe two simple extensions of the result above. These modifications
will be needed in a later chapter.

For our next proposition, we consider an operators (), which are defined as above,
except, that we work only in one variable. Thus, we have a function ¢ € D(R) and
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suppose that

> p(&/2h)? =

k=—o00

We define the operator f — Qf = (1(£,/2%)f(€)):

Proposition 7.7 If f € LP(R"), then for 1 < p < oo, we have

CollFIE < 1O 1Qif 2B < CyllfIIE.
k

Proof. 1f we fix 2’ = (21,...,2,_1), then we have that
ol Wy < I QRS I 21 < Gl My

This is the one-dimensional version of Theorem 7.3. If we integrate in the remaining
variables, then we obtain the Proposition. 1

We will need the following Corollary for the one-dimensional operators. Of course the
same result holds, with the same proof, for the n-dimensional operator.

Corollary 7.8 If2 < p < oo, then we have

£l < CCY QeI

k=—o00

If 1 < p <2, then we have

(D 1@kfI> < ClIfllp-

k=—o00

Proof. To prove the first statement, we apply Minkowski’s inequality bring the sum out
through an LP/? norm to obtain

/n Z Qe f(x)[*)P/? da) /P < Z 1Qxf12.

k=—o00 k=—o00

The application of Minkowski’s inequality requires that p/2 > 1. If we take the square
root of this inequality and use Proposition 7.7, we obtain the first result of the Corollary.
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The second result has a similar proof. To see this, we use Minkowski’s integral
inequality to bring the integral out through the ¢*/? norm to obtain

o0

(et < [ Y @@

k=—o00 k=—00

Now, we may take the pth root and apply Proposition 7.7 to obtain the second part of
our Corollary. 1
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Chapter 8

Fractional integration

In this chapter, we study the fractional integration operator or Riesz potential. To moti-
vate these operators, we consider the following peculiar formulation of the fundamental
theorem of calculus: If f is a nice function, then

fo = | " PO — 0 d

Thus the map g — fio g(t) dt is a left-inverse to differentiation. For a > 0, we define a
family of fractional integral operators by

1 xX
It = — — 1) tat.
@) =g [ 0E=-0
Exercise 8.1 Show that if « > Oand 8 > 0, then

Io TG () = 1o 5(f).

In this section, we consider a family of similar operators in all dimensions. We will
establish the L mapping properties of these operators. We also will consider the Fourier
transform of the distribution given by the function |x|*™". Using these results, we will
obtain the Sobolev inequalities.

We begin by giving an example where these operators arise in nature. This exercise
will be much easier to solve if we use the results proved below.

Exercise 8.2 If f is in S(R"), then

f@) = =i [ Af@lo =y " .

(2 —n)w,_1

69
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Exercise 8.3 For a point v € R?, we let x = 21 + ixy denote a point in R>. If f is in
D(R?) and 0f (z) = %(;—51 + z'g—x’;), show that

fwy= L [ 90y,

mTJrR2 T —Y

Hint: Verify that 01/z = 0 if x # 0 and then apply the divergence theorem in R?\
Be(x). Let e — 07.

8.1 The Hardy-Littlewood-Sobolev theorem

The operators we consider in R™ are the family of Riesz potentials
L(f)(@) =v(a,n) | f(y)le—y|*" (8.4)
Rn

for « satisfying 0 < o« < n. The constant, y(«, n) is given by

_2vl((n— @) /2)
V(e n) = (47)"/2T (a/2)

The condition a > 0 is needed in order to guarantee that |z|*~™ is locally integrable.
Our main goal is to prove the L” mapping properties of the operator I,. We first observe
that the homogeneity properties of this operator imply that the operator can map L? to
L% only if 1/p — 1/q = a/n. By homogeneity properties, we mean: If » > 0 and we let
0-f(z) = f(rx) be the action of dilations on functions, then we have

1.(5,f) = 6, (L f). (8.5)

This is easily proven by changing variables. This observation is essential in the proof of
the following Proposition.

Proposition 8.6 If the inequality

[Hafllqg < CllfIlp
holds for all f in S(R™) and a finite constant C, then

«
o .

==
< |
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Proof.  Observe that we have ||8, f||, = r="/?|| f||,. This is proven by a change of variables
if 0 < p < oo and is obvious if p = co. (Though we will never refer to the case p < 1,
there is no reason to restrict ourselves to p > 1.) Next, if f is in S(R"), then by (8.5)

a0 )l = =100 (Laf)llg = 7= Lo fllo-

Thus if the hypothesis of our proposition holds, we have that for all Schwartz functions
f and all » > 0, that

P M L flly < Cfllr .

If ||Iofll # O then the truth of the above inequality for all » > 0 implies that the
exponents on each side of the inequality must be equal. If f # 0 is non-negative, then
I, f > 0 everywhere and hence |1, f||; > 0 and we can conclude the desired relation on
the exponents. 1

Next, we observe that the inequality must fail at the endpoint p = 1. This follows by
choosing a nice function with [ ¢ = 1. Then with ¢.(z) = e "¢(x/e), we have that as
e— 0",

Lo(¢e)(x) = y(or, n)|x]*".

If the inequality ||Io@c||n/(n—-a) < C|l¢c|l1 = C holds uniformly as €, then Fatou’s Lemma
will imply that |2 lies in L™/ (~®) | which is false.

Exercise 8.7 Show that I, : LP — L9 if and only if I, : LY — L. Hence, we can
conclude that I, does not map L™® to L.

Exercise 8.8 Can you use dilations, 6, to show that the inequality
1 *gll- < [ £ll5llgllq

can hold only if 1/r =1/p+1/q— 17

Exercise 8.9 Show that the estimate

IV Al < Clifllg

can not hold. That is if we fix p and q, there is no constant C so that the above inequality
is true for all f in the Schwartz class. Hint: Let f(x) = n(x)e® where n is a smooth
bump.
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We now give the positive result. The proof we give is due Lars Hedberg [16]. The
result was first considered in one dimension (on the circle) by Hardy and Littlewood.
The n-dimensional result was considered by Sobolev.

Theorem 8.10 (Hardy-Littlewood-Sobolev) If 1/p — 1/q = a/n and 1 < p < n/a, then
there exists a constant C'= C(n,a,p) so that

o flle < Cliflp-

The constant C satisfies C < C(a, n) max((p — 1)~(1=), (5 — )=(1=5)),

Proof of Hardy-Littlewood-Sobolev inequality. We may assume that the LP norm of f
satisfies || f||, = 1. We consider the integral defining I, and break the integral into sets
where |z —y| < R and |z — y| > R:

I.f(x) <~v(a,n) (/B ( |f(—y)|cly—|—/Rn\B ( Mdy) =v(a,n)(I +II).

) |z —yle ) |z —ylre
By Proposition 5.12, we can estimate

R o
I(z,R) < Mf(x)wnl/ r e dr = Mf(x)%wnl
0

where we need that a > 0 for the integral to converge. To estimate the second integral,
I1(x, R), we use Holder’s inequality to obtain

vy Rla—mptan \ P
a—n)p’ +n— 1/p'
) =l )

"I\ (n—a)p —n

e, R) < % ([

>R
1/p’ R
||f||pwn—1 ((’I’L . Oé)p/ . ’I’L)l/p/

where we need a@ < n/p for the integral in r to converge. Using the previous two
inequalities and recalling that we have set || f]|, = 1, we have constants C; and C5 so
that

1L.(f)(z)] < CLR*M f(x) + CoR* ». (8.11)

If we were dedicated analysts, we could obtain the best possible inequality (that this
method will give) by differentiating with respect to R and using one-variable calculus
to find the minimum value of the right-hand side of (8.11). However, we can obtain an
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answer which is good enough by choosing R = M f (a:)_p/ ™. We substitute this value of
R into (8.11) and obtain

[Iaf ()] < (Cy+ Co)M f(x)' =
and if we raise this inequality to the power pn/(n — ap) we obtain
|1, f )|/ (=P) < (O 4 Cy)"P/ (=PI N F ()P

Now, if we integrate and use the Hardy-Littlewood theorem Theorem 5.11 we obtain the
conclusion of this theorem. 1

Exercise 8.12 The dependence of the constants on p, a and n is probably not clear from
the proof above. Convince yourself that the statement of the above theorem is correct.

Exercise 8.13 In this exercise, we use the behavior of the constants in the Hardy-
Littlewood-Sobolev theorem, Theorem 8.10, to obtain an estimate at the endpoint, p =
n/ao.

Suppose that f is in L* and f = 0 outside B,(0). We know that, in general, I, f is
not in L. The following is a substitute result. Consider the integral

—Q - 1 n n—ko _kn_
| e f@P " de = 30 g0 [ g ) .
B1(0) e 1 B1(0)

Since f is in L™ and f is zero outside a ball of radius 1, we have that f is in LP(R") for
allp <nja. Thus, I,f is in every Li-space for oo > q > n/(n — «). Hence, each term
on the right-hand side is finite. Show that in fact, we can sum the series for ¢ small.

Exercise 8.14 If o is real and 0 < o < n, show by example that I, does not map L™/*
to L>. Hint: Consider a function f with f(x) = |z|~%(—log|z|)~" if |z| < 1/2.

Next, we compute the Fourier transform of the tempered distribution v(«, n)|x|* .

More precisely, we are considering the Fourier transform of the tempered distribution

f = 7(a,n) / 2| F(2) dir.

n

Theorem 8.15 If0 < Rea < n, then

(e, n)(l]* ") = ¢
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Proof. We let n(|£]) be a standard cutoff function which is 1 for |{| < 1 and 0 for |£| > 2.
We set m(§) = n(|¢]e)(1 — n([&]/€))|€]*. The multiplier m. is a symbol of order —«
uniformly in e. Hence, by the result Lemma 6.29 of Chapter 6, we have that K. = .
satisfies the estimates

I&]
T Kd@)] < Ofa, B)laf (5.16)

Hence, applying the Arzela-Ascoli theorem we can extract a sequence {¢;} with ¢; — 0
so that K, converges uniformly to some function K on each compact subset of R™\ {0}.
We choose f in S(R") and recall the definition of the Fourier transform of a distribution
to obtain

K(z)f(x)de = lim [ K (2)f(z)dx

R" j*}OO

- Jim / me, (€)F(€) de
_ / €[ f(€) de

The first equality depends on the uniform estimate for K. in (8.16) and the locally
uniform convergence of the sequence K. Thus, we have that K(€) = |€]7® in the sense
of distributions. Note that each m, is radial. Hence, K, and thus K is radial. See
Chapter 1.

Our next step is to show that the kernel K is homogeneous:

K(Rz) = R*"K(x). (8.17)

To see this, observe that writing K = lim; ., K, again gives that

K(Rz)f(z)dz = lim K (R Rx)f(z) dx

R” .7_>OO R”

= Rl [/ RA©d = R [ ) de

_]*)OO

_ / K(x
This equality for all f in S(R™) implies that (8.17) holds. If we combine the homogeneity

with the rotational invariance of K observed above, we can conclude that

m(z) = clz|* .
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It remains to compute the value of ¢. To do this, we only need to find one function where
we can compute the integrals explicitly. We use the friendly gaussian. We consider

c / x| el dy = (47) /2 / |76 g = 2n (42 / |76 dg. (8.18)

Writing the integrals in polar coordinates, substituting s = r2, and then recalling the
definition of the Gamma function, we obtain

o0
a8 |2 _ _Qd’l“
/|a:| Be=lol qp = wn_l/ PP

_ wa /°°s<nm/2€s§
2 Jo s

= lr(n_ﬁ
2 2

)wn—l-

Using this to evaluate the two integrals in (8.18) and solving for ¢ gives

2T ((n - 0)/2)
(47)"/(/2)

We give a simple consequence.

Corollary 8.19 For f in S(R"), we have

L(f) = (f(&)lE™:

A reader who is not paying much attention, might be tricked into thinking that this
is just an application of Proposition 1.24. Though I like to advocate such sloppiness, it
is traditional to be a bit more careful. Note that Proposition 1.24 does not apply to the
study of I, f because I, f is not the convolution of two L! functions. A proof could be
given based on approximating the multiplier |£|~* by nice functions. This result could
have appeared in Chapter 2. However, we prefer to wait until it is needed to give the
proof.

Proposition 8.20 If u is a tempered distribution and f is a Schwartz function, then

N

(f *uy = fa.
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Proof. Recall the definition for convolutions involving distributions that appeared in
Chapter 2. By this and the definition of the Fourier transform and inverse Fourier
transform, we have

(f *ul(g) = f*u(g) = a(f = g) = a((f = g)).

Now, we argue as in the proof of Proposition 1.24 and use the Fourier inversion theorem,
1.32 to obtain

(f*g)(z) = @2m)™" [ f(&—n)gn)e=E D) dedy = f(z)g(x).

Thus, we have (f  uf(g) = a(fg) = (fa)(g)- I

Proof of Corollary 8.19. This is immediate from Theorem 8.15 which gives the Fourier
transform of the distribution given by v(«, n)|x|* ™ and the previous proposition. 1

8.2 A Sobolev inequality

Next step is to establish an inequality relating the L%-norm of a function f with the
LP-norm of its derivatives. This result, known as a Sobolev inequality is immediate from
the Hardy-Littlewood-Sobolev inequality, once we have a representation of f in terms of
its gradient.

Lemma 8.21 If f is a Schwartz function, then

1 Vi) (r—y) dy.
Wn-1 Jrn |z —y"

flz) =
Proof. We let 2/ € S ! and then write
oo d o0
@) = —/ D ety dt = —/ 2 (V) (@ + ) dt.
o dt 0

If we integrate both sides with respect to the variable 2/, and then change from the polar
coordinates t and 2’ to y which is related to ¢t and 2z’ by y — x = tz/, we obtain

wn-1f(z) = —/ / N f(w+t ) dE dY :/
Snfl 0

xr —

Y 1
Vfly) ———dy.
|z =yl ( )!93 — gyt

This gives the conclusion. 1
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Theorem 8.22 If1 < p <n (and thus n > 2), f is in the Sobolev space LP' and q is
defined by 1/q = 1/p — 1/n, then there is a constant C' = C(p,n) so that

1flle < CIV flp-

Proof.  According to Lemma 8.21, we have that for nice functions,

[f(@)] < L(IV ) ().

Thus, the inequality of this theorem follows from the Hardy-Littlewood-Sobolev theorem
on fractional integration. Since the Schwartz class is dense in the Sobolev space, a routine
limiting argument extends the inequality to functions in the Sobolev space. 1

1

The Sobolev inequality continues to hold when p = 1. However, the above argument
fails. The standard argument for p = 1 is an ingenious argument due to Gagliardo, see
Stein [29, pp. 128-130] or the original paper of Gagliardo [13].

Exercise 8.23 If p > n, then the Riesz potential, I, produces functions which are in
Hélder continuous of order v =1— (n/p). If 0 <~y < 1, define the Hélder semi-norm by

[f(z) = fy)]

lz -y

[ fller = sup
TH£Y

a) Show that if f is a Schwartz function, then ||I,(f)|lcv < C|f|l, provided p > n and
v =1—(n/p). b) Generalize to 1,. c) The integral defining I,(f) is not absolutely
convergent for all f in LP if p > n. Show that the differences I f(x) — I f(y) can be
expressed as an absolutely convergent integral. Conclude that if f € LP*Y, then f € C7
for v and p as above.

Exercise 8.24 Show by example that the Sobolev inequality, || flle < CIVflln fails if
p=n andn > 2. Hint: For appropriate a, try f with f(z) = n(z)(—log |z|)* with n a
smooth function which is supported in |x| < 1/2.

Exercise 8.25 Show that there is a constant C = C(n) so that if g = I,(f), then

1
. ol B()) r)— ra| dr < C -
r>0,z€pR” m(B,(z)) /Br(x) |9(2) = (9)r.al il

Here, (f),. denotes the average of f on the ball B, (x).
1
m(B,(z)) J, ()

' This assumes that w,*; = y(1,n), which T have not checked.




78 CHAPTER 8. FRACTIONAL INTEGRATION

Exercise 8.26 Show that in one dimension, we have the inequality || f|l < ||f'|l1 for
nice f. State precise hypotheses that f must satisfy.

We now consider an operator in two-dimensions that will be of interest in a few
chapters. In the next two exercises, we will use a complex variable x = x1 4+ 125 to denote
a point in R2.

Exercise 8.27 We define the Cauchy transform of a Schwartz function by
_1 [ 1)

T JcX—Y

9f(x)

dy.

Here, we are using dy to denote the two-dimensional Lebesque measure on the plane. a)
Let u denote the distribution given by

u(f) = %/C%dy-

Verify that if we use the definition of the convolution of a tempered distribution and test
function as in Chapter 3, we have

wrf9) = [ o(Pah(e) de
b) For f in S(C), show that
dg(f)(a) = f(a).
¢) If f is in LP for 1 < p < 2, show that we have
dgf = f

where we identify gf with the distribution h — [ gf(x)h(z)dz.
d) If f is a Schwartz function, show that we have

8wm:m;ﬁbf@

=0t T (x —y)?

Here, 0 = %(6%1 — 2'8%2). We define the Beurling operator by B f(x) = 0g(f)(z).

e) Show that we have
/().

Iy

Bf(€) =
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Again, we are using the complex variable & = & + i€ to denote a point in C. Conclude
that || Bf|l, < Cpl|fllp, for 1 <p < oo.
f) Suppose f is in S(C). Show that

/C|5f|2dx:/c|8f|2dx.

Exercise 8.28 The functions of bounded mean oscillation are the class of functions for
which the expression

Hint: Integrate by parts.

1]l = sup /B F(2) — il da}

1s finite. Here, fg denotes the average of f on B. The supremum is taken over all balls
n R™.
Note that in general, the expression || f||. will not be a norm but only a seminorm.
If f is a Schwartz function on R?, show that

lgf1l« < Cllf]-
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Chapter 9

Singular multipliers

In this section, we establish estimates for an operator whose symbol is singular. The
results we prove in this section are more involved than the simple L? multiplier theorem
that we proved in Chapter 3. However, roughly speaking what we are doing is taking
a singular symbol, smoothing it by convolution and then applying the L? multiplier
theorem. As we shall see, this approach gives estimates in spaces of functions where we
control the rate of increase near infinity. Estimates of this type were proven by Agmon
and Hormander. The details of our presentation are different, but the underlying ideas
are the same.

9.1 Estimates for an operator with a singular symbol
For the next several chapters, we will be considering a differential operator in R™, n > 3,
A42(-V =e"Ae™t

where ¢ € C" satisfies (- ¢ =37, (;¢; = 0.

Exercise 9.1 Show that ( € C" satisfies ( - ¢ = 0 if and only if ¢ = & + in where & and
n are in R™ and satisfy |£] = |n| and £ -n = 0.

Exercise 9.2 a) Show that Ae* = 0 if and only if (- ¢ = 0. b) Find conditions on
7 € R and £ € R"™ so0 that €™ satisfies
82

(@ N A)etr+x~f =0.

81
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The symbol of this operator is
—[€ 4+ 2i¢ - € = |Tm > — [ Tm  + £]* + 2 Re (- €.

Thus it is clear that this symbol vanishes on a sphere of codimension 2 which lies in the
hyperplane Re ¢ - £ = 0 and which has center — Im ¢ and radius | Im {|. Near this sphere,
the symbol vanishes to first order. This means that the reciprocal of the symbol is locally
integrable. In fact, we have the following fundamental estimate.

Lemma 9.3 Ifn e R", 0 < s <1 andr > 0 then there exists a constant C' depending
only on the dimension n so that
’6‘8 07’”_1

— = 1 d .
/Br(ﬁ) —[&]2 +2i¢ - € = ||

Proof. We first observe that we are trying to prove a dilation invariant estimate, and we
can simplify our work by scaling out one parameter. If we make the change of variables,

¢ = |¢|x, we obtain
€]° ) Ed
/Brm) —[€]* +2i¢ - ¢ B/l —|2|? +2¢ - @

where ¢ = ¢/|¢|. Thus, it suffices to consider the estimate when |¢| = 1 and we assume
below that we have || = 1.

We also, may make rotation £ = Ox so that O' Re( = e, /v/2, with e; the unit vector
in the z; direction and O'Im ¢ = ey/ v/2. Then, we have that

9N |z|*
. d§ = , dzx.
/Bm) | = 1€]% + 2i¢ - ¢ B.(0tn) | = [2]? + 2i0'C - x|

Thus, it suffices to prove the Lemma in the special case when ¢ = (e, + ies)/v/2.

We let 3¢ = {€: —|¢|? 4+ 2i¢ - € = 0} be the zero set of the symbol.

Case 1. The ball B, (n) satisfies r < 1/100, dist(n, ;) < 2r. Since |{|® is bounded by
a constant on B,.(n), it suffices to consider the case s = 0. We make an additional change
of variables. We rotate in the variables (&, ...&,) about the center of Y¢, —e;/v/2, so
that n is within 2r units of the origin. We can find a ball Bs, of radius 3r and centered 0
in X so that B,.(n) C Bs, Now, we use coordinates 1 = Re(-£, o = | Im (]*—| Im (+£/?
and z; = & for j = 3,...,n. We leave it as an exercise to compute the Jacobian and
show that it is bounded above and below on B,.(n). This gives the bound

/ 1
Bs,

1
—[&[* + 24 - 5‘ . Bon(0) 171 + 2]

deidzsy ... dx, = Cr* L.
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g

3

/.

S

Case 2. We have B, (n) with dist(n, X¢) > 2r. In this case, we have

€]°
sup - < C/r.
o TR raicg =Y

If dist(n, X¢) < 8, then this follows since | — |¢|* + 2iC - €| is comparable to dist(&, o¢) on
B.(n). If dist(n, X¢) > 8, then | — || + 2iC - €| is comparable to |¢[* for £ € B,(n). The
Lemma follows easily.

Case 3. The ball B, (n) satisfies 7 > 1/100 and dist(n, ;) < 2r.

In this case, write B,.(n) = ByUBy where By = B,.(n)NB4(0) and By, = B,(n)\ B4(0).

By case 1 and 2,
I°
: a¢ < C.
IRt

Since B,(0) contains the set ¥¢, one can show that

§I° 2
——— < C/[¢]*
| = [€]? + 2i¢ - ]
on B, and integrating this estimate gives
9N .
- d¢ < Cr"2ts,
/Boo | — [€]* + 2i¢ - ]
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Since r > 1/100, the estimates on By and By, imply the estimate of the Lemma in this
case. 1

As a consequence of this Lemma, we can define the operator G, : S(R") — S'(R")

by
_ £(©) .
Gef = <—|£\2+2i£c<>

Lemma 9.4 The map G¢ is bounded from S(R™) to S'(R™) and we have
(A+20-V)Gof =G(A+2C-V)f = f
if f e S(R™).

Proof.  According to the previous lemma, the symbol of G satisfies the growth condition
of Example 2.26 in Chapter 2. Hence G.f is in S'(R"™). The remaining results rely on
the Proposition 1.18 of Chapter 1. 1

It is not enough to know that G f is a tempered distribution. We would also like
to know that the map G is bounded between some pair of Banach spaces. This will be
useful when we try to construct solutions of perturbations of the operator A + 2¢ - V.
The definition of the spaces we will use appears similar to the Besov spaces and the
Littlewood-Paley theory in Chapter 7. However, now we are decomposing f rather than
f . To define these spaces, we let

B;j = B (0)

and then put R; = B;\ B;_;. We let M P*(R™) denote the space of functions u for which

the norm
oo 1/q
||u||M5,s = ( Z [2ks||U||Lp(Rk)]q> < 00.

k=—o00

Also, we let MP* be the space of measurable functions for which the norm

0o 1/q
Jull pgzs = <!UHLP(BO + > 2"l oay) q) :
k=1

These definitions are valid for 0 < p < 00, s € R and 0 < ¢ < oco. We will also need the
case when ¢ = oo and this is defined by replacing the ¢4 norm of the sequence 2%¢||ul| s (g,)
by the supremum. Our primary interests are the spaces where p =2, ¢ =1 and s =1/2
and the space where p = 2, ¢ = oo and s = —1/2. The following exercises give some
practice with these spaces.
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Exercise 9.5 For which a do we have
(1+ |2 € ME2(R").

Exercise 9.6 Show that if r > q, then

M2 C M2,
Exercise 9.7 Show that if s > 0, then

M}® C M},
Exercise 9.8 Let T be the multiplication operator

Tf(x) = (1+|al?) 92 f ().

Show that if € > 0, then
2,1/2
T V212 M /'

Exercise 9.9 Show that we have the inclusion Mf’l/Q C L*(R", dus) where dus = (1 +
|z|?)**dx. This means that we need to establish that for some C depending on n and s,
we have the inequality

lullz2me) + D lullzzry < C(/R u(@)P(1 + |2*)° dz)'/

k=1

Hint: The integral on R"™ dominates the integral on each ring. On each ring, the
weight changes by at most a fived factor. Thus, it makes sense to replace the weight by
its smallest value. This will give an estimate on each ring that can be summed to obtain
the Mf’l/Q norm.

The main step of our estimate is the following lemma.

Lemma 9.10 Let ¢ and v’ are Schwartz functions on R"™ and set y.(z) = ¥(27%z) and
Yi(x) =¢'(277x). We define a kernel K : R" x R* — C by

1/;;(51 — (6 — &)

K= ™ P vaic €

de.
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Then there is a constant C so that

SUP/|K &,6)d6 < % (9.11)
Sup/|K §1,6)d6 < %k (9.12)
As a consequence, the operator Tj, given by
Tl (6) = [ K 6)s(6) dés
satisfies
T3Sl < 122 171 (9.13)

Proof. Observe that 1 (&) = 2’“”}/3(52’“) = (¢)g-r(€). Thus, ||¢]|1 is independent of k.
Since ¢ € S(R™), we have that ||¢||; is finite. Thus if we use Tonelli’s theorem, we have

IS h\/}s!iz@cﬂf\ %

To estimate the integral on the right of this inequality, we break the integral into rings
centered at §; and use that )" decays rapidly at infinity so that, in particular, we have
P'(€) < Cmin(1, [¢]™™). Then applying Lemma 9.3 gives us

(& — €)] S 1
d 2™ . d
e raicg e < Il /32j<m|—|s|2+2z<-s| ¢

e ) ) 1
+) oo l-h / . 3
Z By j11(61)\By—j+i-1(&1) | = €17 + 2i¢ - ¢
< —23 27!
q Z

This gives the first estimate (9.11). The second is proven by interchanging the roles of
&1 and &. The estimate (9.11) gives a bound for the operator norm on L*. The estimate
(9.12) gives a bound for the operator norm on L'. The bound for the operator norm on
L? follows by the Riesz-Thorin interpolation theorem, Theorem 4.1. See exercise 4.5. 1
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Exercise 9.14 Show that it suffices to prove the following theorem for |(| = 1. That is,
show that if the theorem holds when |(| = 1, then by rescaling, we can deduce that the
result holds for all ¢ with (- ¢ = 0.

Exercise 9.15 The argument given should continue to prove an estimate as long as Re
and Im { are both nonzero. Verify this and show how the constants depend on (.

Theorem 9.16 The map G satisfies
_j C
sup 2797 Ge fll L2 (s,) < m||f||1\'41271/2
j

and o
sup 292G fllr2(s,) < m”fHMf,l/%
J

Proof. We first suppose that f is in the Schwartz space. We choose 1/ > 0 as in Chapter
7 so that supp ¢ C {z:1/2 < x < 2} and with ¢y (z) = ¥(27%2), we have

> Wp=1,  inR"\{0}.

k=—00

Welet ¢ = 11if [z] <1, ¢ > 0, ¢ € D(R") and set ¢;(x) = ¢(277x). We decompose f
using the 1;’s to obtain

$;Gef = ¢Gaif.

k=—00

The Plancherel theorem implies that
I6,GeWENIE = () [ 1T0uT P de.

Here, the operator 7} is as in the previous lemma but with ¢ replaced by ¢ and 7'
replaced by 1. Hence, from Lemma 9.10 we can conclude that

%Wzm S e f e (9.17)

< lg<1

lo;Gevifll2 <

Now, using Minkowski’s inequality, we have

1Gefllrzmy <C D dGetif 2w (9.18)

k=—00>
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The first conclusion of the theorem now follows from (9.17) and (9.18).
The estimate in the inhomogeneous space follows by using Cauchy-Schwarz to show

0 0 1/2 0 1/2 \/5 1/2
> #lno < (3 W) (3 27) = (325) W

k=—0o0 k=—oc0 k=—oc0

Finally, to remove the restriction that f is in the Schwartz space, we observe that the

Lemma below tells us that Schwartz functions are dense in M12 12 and ]\412 172, 1

Lemma 9.19 We have that S(R™) N Mf’lm is dense in ]\.412’1/2 and S(R™) N Mf’l/Q is

o r2,1/2
dense in M, /2,

Proof. To see this, first observe that if we pick f in M12 /2 and define
() = 0, lz| < 27N or |z| > 2V
M f), 27N <o <2V
then fy converges tof in M12 12, Next, if we regularize with a standard mollifier, then
fne = fn *n converges to fy in L2 If we assume that 7 is supported in the unit ball,
then for ¢ < 27V~ fy  will be supported in the shell {z : 27¥7! < |z| < 2¥+1}. For
such functions, we may use Cauchy-Schwarz to obtain

N+l 12/ N1 1/2
1 = frvellyzr < (Z HfN,e_fNH%?(Rk)) (Z 2k> =Cllfv = Fell2-
k=—N

k=—N

Hence, for functions supported in compact subsets of R™ \ {0}, the L? convergence of
fne to fy implies convergence in the space .Ml2 /2, Approximation in M12 /2 s easier
since we only need to cut off near infinity. 1
Exercise 9.20 Are Schwartz functions dense in MZV2y

Exercise 9.21 Use the ideas above to show that

sup 27| VG fllzas,) < Ol fll yy2ar2.
J

Hint: One only needs to find a replacement for Lemma 9.35.

Exercise 9.22 Use the ideas above to show that I, : MP*?* — M2 “*. Hint: Again,
the main step is to find a substitute for Lemma 9.5.
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Finally, we establish uniqueness for the equation Au + 2¢ - Vu = 0 in all of R™. In
order to obtain uniqueness, we will need some restriction on the growth of u at infinity.

Theorem 9.23 If u in L}, and satisfies

Jim 27|l 25,01 = O

and Au + 2¢ - Vu =0, then u = 0.
The following is taken from Hérmander [18], see Theorem 7.1.27.

Lemma 9.24 [f u is a tempered distribution which satisfies

lim sup R_d||uHL2(BR(O)) =M < oo
R—o0

and u is supported in a compact surface S of codimension d, then there is a function

ug € L*(S) so that
u(9) :/¢uoda
S

Proof.  We choose ¢ € D(R™), supp ¢ C B1(0), ¢ even, [ ¢ =1 and consider @ * ¢.. By
Plancherel’s theorem, we have that

and HUOHLQ(S) S CM.

/|1l * goj|> dE = / 627z u(a)|? de < C27V M,
To establish this, we break the integral into the integral over the unit ball and integrals

over shells. We use that ¢ is in S(R") and satisfies |¢(x)| < C min(1, |z|~@D). For j
large enough so that 277¢||ul| 25,y < 2M, we have

JECRE I AUCTEEDS [, e

< C2YUM? 4 0¥ Zz FAM? = CMP2Y.
k=3

If we let S, = {£ : dist(&,supp S) < €} and ¢ is in the Schwartz class, then we have

/|@/}($)|2d0 = Cy lim e [ |¢(z)]* da.
S e—0t Se
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Since ¢, *x ¢ — 1Y in S, we have

() = lim (0 * ).
Then using Cauchy-Schwarz and the estimate above for u * ¢5-;, we obtain

sl =| [ ors(opite) ol < O [ ot do)

2—J

If we let ¢ — 0%, we obtain that |a(y)| < CM||¢||L2s). This inequality implies the
existence of ug. |

Now we can present the proof of our uniqueness theorem.

Proof of Theorem 9.23. Since Au + 2¢ - Vu = 0, we can conclude that the distribution
@ is supported on the zero set of —|{| 4+ 2iC - £, a sphere of codimension 2. Now the

hypothesis on the growth of the L? norm and the previous lemma, Lemma 9.24 imply
that 4 = 0. 1

Corollary 9.25 If f is in Mf’l/Z, then there is exactly one solution u of
Au+2(-Vu=f
which lies in M=%, This solution satisfies

[Clllull yz-r2 + VUl y2mre < Ol fl] 272

Proof. The existence follows from Theorem 9.16 and exercise 9.21. If u is in Mf{l/ 2,

then we have u is in L? . and that

Jim 27 ull 125, 0) = 0

if & > 1/2. Thus, the uniqueness follows from Theorem 9.23. 1
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9.2 A trace theorem.

The goal of this section is to provide another application of the ideas presented above.
The result proven will not be used in this course. Also, this argument will serve to
introduce a technical tool that will be needed in Chapter 15.

We begin with a definition of a Ahlfors condition. We say that a Borel measure pu
in R" satisfies an Ahlfors condition if for some constant A it satisfies (B, (z)) < Ar"~1.
This is a property which is satisfied by surface measure on the boundary of a C*'-domain
as well as by surface measure on a graph {(z/,z,) : =, = ¢(z')} provided that the

[Vlloo < 0.
Our main result is the following theorem.

Theorem 9.26 If f is in S(R™) and p satisfies the Ahlfors condition, then there is a
constant C' so that

062 du < 2 .
[ 18P du < Cllulsa

This may seem peculiar, but as an application, we observe that this theorem implies
a trace theorem for Sobolev spaces.

Corollary 9.27 If yu satisfies the Ahlfors condition and s > 1/2 then we have
[ 1l d < Cllulme

Proof. First assume that v € S(R"). Applying the previous theorem to u(x) =
(27m) "™u(—x) gives that

[ 1uf? duta) < Clal gz

It is elementary (see exercise 9.9), to establish the inequality

||U||M12,1/2 < Cs/ ‘U({L’)|2(1 + |x|2)s dx
R’ﬂ
when s > 1/2. Also, from exercise 9.7 or the proof of theorem 9.16, we have
||U||M12,1/2 S CS||U||M12,1/2.

Combining the two previous inequalities with v = u gives the desired conclusion. 1
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/

Lemma 9.28 The map g — [ -gdx is an isomorphism from MZ? 10 the dual space

of ]\/[12’1/2, M12,1/2,.

Proof. 1t is clear by applying Hoélder’s inequality twice that

. fode < | fll 22 Mgl pyz-rre-

Thus, our map takes Mi;l/Q into the dual of Mf’l/z. To see that this map is onto, suppose
!/ .

that A € M>"%. Observe L*(R;,) C MP'? in the sense that if f € L?*(Rj), then the

function which is f in Ry and 0 outside Ry lies in M12 12, Thus, for such f,

M) S M ggzarz 1 fll gz = 2210 ggarz Lf 22 ry-
Since we know the dual of L?*(Ry), we can conclude that there exists g, with
lgxllz2re) < 2521 212, (9.29)

so that
ANf)= [ [fgdx (9.30)

Ry
for f € L*(Ry). We set g = >2° _ gr. Note that there can be no question about the
meaning of the infinite sum since for each = at most one summand is not zero. The
estimate (9.29) implies ||g|l 212 < [[A]l 22, If f is supported in Ul _y Ry, then
o0 1

summing (9.30) implies that

A = [ fgd.
Finally, such f are dense in Ml2 A/ 2, so we conclude \(f) = [ fgdx for all f. 1

We have defined the adjoint of an operator on a Hilbert space in exercise 6.11. Here,
we need a slightly more general notion. If 7': X — H is a continuous linear map from
a normed vector space into a Hilbert space, then x — (T'x,y) is a continuous linear
functional of X. Thus, there exists yx € X’ so that y*(x) = (Tx,y). One can show
that the map y — y* = T™y is linear and continuous. The map 7% : H — X’ is the
adjoint of the map T'. There adjoint discussed here is closely related to the transpose of
a map introduced when we discussed distributions. For our purposes, the key distinction
is that the transpose satisfies (T'f,g) = (f,T'g) for a bilinear pairing, while the adjoint
is satisfies (T'f, g) = (f,T*g) for a sesquilinear pairing (this means linear in first variable
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and conjugate linear in the second variable). The map T — T* will be linear, while the
map 17" — T™ is conjugate linear.

The following lemma is a simple case of what is known to harmonic analysts as the
Peter Tomaés trick. It was used to prove a restriction theorem for the Fourier transform
in [38].

Lemma 9.31 Let T : X — H be a map from a normed vector space X into a Hilbert
space H. If T*T : X — X', and

IT"Tfllx < A% fllx

then
ITflln < Allfllx-

Proof. We have
T*Tf(f) = (Tt Tf) = |Tfll3
and since [T*Tf(f)| < |[T*T fllx /|| fllx < A% fllx, the lemma follows. "

Proof of Theorem 9.26. We consider f in M1271/2 and let T" denote the map f — f as a
map into L?*(u). The map T*T is given by

TTf(@) = | ) due).

Using the Ahlfors condition on the measure y one may repeat word for word our proof of
Theorem 9.16 to conclude 77T maps Mf’l/Q — MZ % Now the two previous Lemmas

give that T : M"? — L2(p). 1

Exercise 9.32 Prove a similar result for other co-dimensions—even fractional ones. That
is suppose that u(B,(x)) < Cr"=* for 0 < a < n. Then show that

| 1P du(e) < Il g
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Chapter 10

The Dirichlet problem for elliptic
equations.

In this chapter, we introduce some of the machinery of elliptic partial differential equa-
tions. This will be needed in the next chapter to introduce the inverse boundary value
problem we will study.

10.1 Domains in R"

For O an open subset of R™, we let C*(O) denote the space of functions on O which have
continuous partial derivatives of all orders a with || < k. We let C*(O) be the space
of functions for which all derivatives of order up to k extend continuously to the closure
O, O. Finally, we will let D(O) to denote the space of functions which are infinitely
differentiable and are compactly supported in O.

We say that (2 C R" is a domain if ) is a bounded connected open set. We say that a
domain is of class C* if for each z € , there is an 7 > 0, ¢ € C*(R"!) and coordinates
(2',x,) € R"! x R (which we assume are a rotation of the standard coordinates) so that

O0UN By (x) = {(2,2,) : xp = P(2)}

QN By (z) = {(&,2,) : x> o))}
Here, 0 is the boundary of a set. We will need that the map z — (2/, 2¢(z') — x,) map
QN B.(x) into Q¢ This can always be arranged by decreasing r. We also will assume

that V¢ is bounded in all of R"!.

95
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x, =0 (x)

In these coordinates, we can define surface measure do on the boundary by

o "1 = | £/ 0V T+ VO dy

Br () {y:yn=0(y')}

Also, the vector field v(y) = (Vo(y'), —=1)(1 + |[Vé(y)|?)~/? defines a unit outer normal
for y € B.(z) N oN.

Since our domain is bounded, the boundary of €2 is a bounded, closed set and hence
compact. Thus, we may always find a finite collection of balls, {B,(z;) : i =1,...,N}
as above which cover 0f).

Many of arguments will proceed more smoothly if we can divide the problem into
pieces, choose a convenient coordinate system for each piece and then make our calcu-
lations in this coordinate system. To carry out these arguments, we will need partitions
of unity. Given a collection of sets, {A,}, which are subsets of a topological space X,
a partition of unity subordinate to {A,} is a collection of real-valued functions {¢,} so
that supp ¢ C A, and so that ) ¢, = 1. Partitions of unity are used to take a problem
and divide it into bits that can be more easily solved. For our purposes, the following
will be useful.

Lemma 10.1 If K is a compact subset in R™ and {Uy,...,Un} is a collection of open
sets which cover K, then we can find a collection of functions ¢; with each ¢; in D(U;),

quﬁjglandzyzlqu:lonl(.

Proof. By compactness, we can find a finite collection of balls { B}, so that each By
lies in some U; and the balls cover K. If we let F = UBj, be the union of the closures of
the balls By, then the distance between K and R™ \ F is positive. Hence, we can find
finitely many more balls {By;11,. .., By} to our collection which cover OF and which
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are contained in R" \ K. We now let 7, be the standard bump translated and rescaled
to the ball By. Thus if B, = B,(z), then 7jx(y) = exp(—1/(r* — |y — z|?)) in By and 0
outside By. Finally, we put 77 = zggL N and then ng = 7 /7. Each ng, k=1,..., M is
smooth since 7 is strictly positive on O. Then we have Z,iwzl N = 1 on K and we may
group to obtain one ¢; for each U;. 1

The following important result is the Gauss divergence theorem. Recall that for a C"
valued function F' = (F}, ..., F,), the divergence of F, is defined by

div ' = —.
v z; oz,

1=

Theorem 10.2 (Gauss divergence theorem) Let Q be a C' domain and let F : Q — C"
be in C*(Q). We have

/ F(z) - v(x)do(x) = / div F(z) dx.
o0 Q
The importance of this result may be gauged by the following observation: the theory
of weak solutions of elliptic pde (and much of distribution theory) relies on making this
result an axiom.

An important Corollary is the following version of Green’s identity. In this Corollary
and below, we should visualize the gradient of u, Vu as a column vector so that the
product AVwu is makes sense as a matrix product.

Corollary 10.3 IfQ is a C'-domain, v is in CHQ), u is in C%(Q) and A(z) is ann xn
matriz with C1(Q) entries, then

/mv(:x)A(x)Vu(:v) cv(z)do(z) = /QA(:U)Vu(:U) -Vo(z) +v(r)div A(z)Vu(x) dz.

Proof. Apply the divergence theorem to vAVu. 1
Next, we define Sobolev spaces on open subsets of R™. Our definition is motivated by
the result in Proposition 3.13. For k a positive integer, we say that u € L*#(Q) if u has

weak or distributional derivatives for all a for |a| < k and these derivatives, 0%u/0x?,
lie in L?(€2). This means that for all test functions ¢ € D(f2), we have

o* o0*
/Qu%qﬁ(x) dr = (—1)“'/Q¢%u(x) dx.
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The weak derivatives of u are defined as we defined the derivatives of a tempered dis-
tribution. The differences are that since we are on a bounded open set, our functions
are supported there and in this instance we require that the derivative be a distribution
given by a function.

It should be clear how to define the norm in this space. In fact, we have that these
spaces are Hilbert spaces with the inner product defined by

0% 0“v
(u,v) —/Q Z Foa Daa dx. (10.4)

We let ||ul|p2k(q) be the corresponding norm.

Exercise 10.5 Show that if Q) is a bounded open set, then C*(Q2) C L**(Q).

Example 10.6 If u is in the Sobolev space L**(R™) defined in Chapter 3 and Q is an
open set, then the restriction of u to Q, call it ru, is in the Sobolev space L**(Q). If Q
has reasonable boundary, (C* will do) then the restriction map r : L**(R"™) — L**(Q) is
onto. However, this may fail in general.

Exercise 10.7 a) Prove the product rule for weak derivatives. If ¢ is in C*(Q) and all
the derivatives of ¢, 0%¢/0z® with |a| < k are bounded, then we have that

Pou_ s~ o
ore BN OxP Oz

Bty=a

b)If ¢ € CH(Q), conclude that the map u — ¢u takes L**(Q) to L**(Q) and is
bounded. B
¢) If p € CY(Q), show that the map u — ¢u maps Ly (Q) — Lo ().

Lemma 10.8 If Q is a C' domain and u is in the Sobolev space L**(Q), then we may
write u = Z;‘V:o u; where ug has support in a fived (independent of u) compact subset
of Q and each u;, j = 1,..., N is supported in a ball B, (x;) as in the definition of ot
domain.

Proof. We cover the boundary, Q) by balls {Bj,..., By} as in the definition of C!
domain. Then, K = Q\UX_| By, is a compact set so that the distance from K to R™\ Q is
positive, call this distance §. Thus, we can find an open set Uy = {z : dist(z, 9Q) > §/2}
which contains K and is a positive distance from 0{2. We use Lemma 10.1 to make a
partition of unity 1 = ij:o n; for the open cover of Q {Uy, By ..., By} and then we
decompose u = Z;V:o n;u . The product rule of exercise 10.7 allows us to conclude that
each term wu; = nju is in L>*(Q). '
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Recall that we proved in Chapter 2 that smooth (Schwartz, actually) functions are
dense in L’(R™), 1 < p < 0o. One step of the argument involved considering the map

N % u

where 7 is a Schwartz function with [ = 1. This approach may appear to break down
u is only defined in an open subset of R", rather than all of R". However, we can make
sense of the convolution in most of €2 if we require that the function n have compact
support. Thus, we let n € D(R™) be supported in B;(0) and have [n=1.

Lemma 10.9 Suppose u is the Sobolev space LP*(Q), 1 < p < oo, for k =0,1,2,....
Set Q. = QN {x : dist(x,00Q) > e}. If we set us = ns * u, then for |a| < k, we have
o o

%utg = (%u)(g, for x € Q. with 6 < e.

Hence, for each € > 0, we have

613(1)1 [ = us| ok = 0.
Proof. We assume that u is defined to be zero outside of Q. The convolution u * ns(x)
is smooth in all of R"™ and we may differentiate inside the integral and then express the
x derivatives as y derivatives to find
aoz aa 804
= —d——1al/ —ns(x —y) dy.
s ms(o) = [ ul)g e =) dy = (<1 [ ulo)g e~ ) dy

If we have § < € and z € €, then ns(x — -) will be in the space of test functions D(£2).
Thus, we can apply the definition of weak derivative to conclude

(67 (07

(07! [ )it =) dy = [ (5 utw)nste ~ o) dy

1
Lemma 10.10 IfQ) is a C*-domain and k = 0,1,2, ..., then C>(Q) is dense in L**(Q).

Proof. 'We may use Lemma 10.8 to reduce to the case when u is zero outside B,(x) N
for some ball centered at a boundary point x and 02 is given as a graph, {(2, z,) : z,, =
(")} in B,(z). We may translate u to obtain u.(z) = u(z + €e,). Since u. has weak
derivatives in a neighborhood of €2, by the local approximation lemma, Lemma 10.9 we
may approximate each u, by functions which are smooth up to the boundary of €. 1
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Lemma 10.11 If Q and ' are bounded open sets and F : Q — Q' is C'(Q) and F~'
' — Qs also C*(Y), then we have u € L**(QY) if and only if uo F € L*>*(Q).

Proof. The result is true for smooth functions by the chain rule and the change of
variables formulas of vector calculus. Note that our hypothesis that F' is invertible
implies that the Jacobian is bounded above and below. The density result of Lemma
10.9 allows us to extend to the Sobolev space. 1

Lemma 10.12 IfQ is a Ct-domain, then there exists an extension operator E : L**(Q) —
L**(R™).

Proof. We sketch a proof when k£ = 1. We will not use the more general result. The
general result requires a more substantial proof. See the book of Stein [29], whose result
has the remarkable feature that the extension operator is independent of k.

For the case k = 1, we may use a partition of unity and to reduce to the case where u
is nonzero outside B, (z)N{2 and that 0f is the graph {(2/, x,,) : x, = ¢(2’)} in B.(z). By
the density result, Lemma 10.10, we may assume that u is smooth up to the boundary.
Then we can define Fu by

_ [ ula), Zn > ¢(@)
Eu(z) = { (e, 26(z) — ), T, < ¢(z')

If v is test function in R”, then we can apply the divergence theorem in 2 and in

R™\ Q to obtain that

/ Eua—w + w(’?Eu dr = YEuv - ejdo
o Oz du; o0
E
/ Eua—w + wa Y = - YEuv -e;do
r\0 0T O a0

In the above expressions, the difference in sign is due to the fact that the normal which
points out of €2 is the negative of the normal which points out of R™ \ Q.

Adding these two expressions, we see that Fu has weak derivatives in R". These weak
derivatives are given by the (ordinary) derivative 0Eu/Ox;, which is defined except on
09). In general, Fu will not have an ordinary derivative on 9f). Using Lemma 10.11, one
can see that this extension operator is bounded. The full extension operator is obtained
by taking a function wu, writing u = Z;.V:O n;u as in Lemma 10.8 where the support of 7
does not meet the boundary. For each n; which meets the boundary, we apply the local
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extension operator constructed above and then sum to obtain Eu = nyu + Zjvzl E(n;u).
Once we have defined the extension operator on smooth functions in L*!, then we can
use the density result of Lemma 10.10 to define the extension operator on the full space.
1

Next, we define an important subspace of L>'(Q), L' (). This space is the closure
of D(Q) in the norm of L>'(Q). The functions in L} () will be defined to be the
Sobolev functions which vanish on the boundary. Since a function w in the Sobolev space
is initially defined a.e., it should not be clear that we can define the restriction of u to a
lower dimensional subset. However, we saw in Chapter 9 that this is possible. We shall
present a second proof below. The space L' (€2) will be defined as the space of functions
which have zero boundary values.

Remark: Some of you may be familiar with the spaces L>'(Q) as H' () and Ly (Q)
as Hy ().

We define the boundary values of a function in L*»!(Q) in the following way. We
say that u = v on 9Q if u — v € L' (Q). Next, we define a space L>'/2(9Q) to be the
equivalence classes [u] = u+ Ly (Q) = {v: v —u € L>(Q)}. Of course, we need a norm
to do analysis. The norm is given by

|l p20/2(00) = nf{[|v]|L210) u —v € L' (Q)}. (10.13)

It is easy to see that this is a norm and the resulting space is a Banach space. It is
less clear L*'/2(0Q) is a Hilbert space. However, if the reader will recall the proof of
the projection theorem in Hilbert space one may see that the space on the boundary,
L>12(9Q), can be identified with the orthogonal complement of Lg" () in L>'(Q) and
thus inherits an inner product from L*!().

This way of defining functions on the boundary should be unsatisfyingly abstract to
the analysts in the audience. The following result gives a concrete realization of the
space.

Proposition 10.14 Let Q be a C'-domain. The map
r: CHQ) — L*(09)
which takes ¢ to the restriction of ¢ to the boundary, r¢ satisfies
[rullr200) < Cllull 2@

and as a consequence extends continuously to L>(Q). Since r(Lg™(Q)) = 0, the map

r is well-defined on equivalence classes in L>Y?(0Q) and gives a continuous injection
r L2Y2(08) — L2(09).
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Exercise 10.15 Prove the above proposition.

Exercise 10.16 If Q is a C' domain, let H be a space of functions f on O defined as
follows. We say that f € H if for each ball B,(x) as in the definition of C' domains and
eachn € D(B,(x)), we have (nf)(y', ¢(y')) is in the space L>'/>(R"') defined in Chapter
3. In the above, ¢ is the function whose graph describes the boundary of ) near x. A
norm in the space H may be defined by fizing a covering of the boundary by balls as in
the definition of C'-domains, and then a partition of unity subordinate to this collection
of balls, > i and finally taking the sum

> Ul zaraas
k

Show that H = L*>'2(99).
Hint: We do not have the tools to solve this problem. Thus this exercise is an excuse
to indicate the connection without providing proofs.

Lemma 10.17 If Q is a C* domain and u € C*(Q), then there is a constant C so that

uw)Pdor(o) < C [ Julw) +|Vu(o) do.

o9 Q

Proof.  According to the definition of a C'-domain, we can find a finite collection of balls
{B;:j=1,...,N} and in each of these balls, a unit vector, «;, which satisfies a; - v >
0 > 0 for some constant 6. To do this, choose «; to be —e,, in the coordinate system which
is used to describe the boundary near B;. The lower bound will be min;(1+||V;||2,)~Y/?
where ¢; is the function which defines the boundary near B;. Using a partition of unity
> ; ¢; subordinate to the family of balls B; which is 1 on 0f), we construct a vector field

alz) = 3" di(a)ay.

We have a(z) - v(x) > 6 since each «; satisfies this condition and each ¢; takes values in
[0,1]. Thus, the divergence theorem gives

§ | |u(@)fdo(z) < lu(z)Pa(z) - v(z) dx
o0 )

— /Q lu|?(diva) + 2Re(u(z)a - Vi(z)) dr.

Applying the Cauchy-Schwarz inequality proves the inequality of the Lemma. The con-
stant depends on €2 through the vector field v and its derivatives. 1
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Proof of Proposition 10.14. The proposition follows from the lemma. That the map r
can be extended from nice functions to all of L*!(2) depends on Lemma 10.10 which
asserts that nice functions are dense in L?!(€). i

Exercise 10.18 Suppose that Q is a C* domain. Show that if ¢ € C1(Q) and ¢(z) =
on 08, then ¢(x) is in the Sobolev space Ly ().

Finally, we extend the definition of one of the Sobolev spaces of negative order to
domains. We define L>~1(Q) to be the dual of the space Lg" (Q). As in the case of R,
the following simple lemma gives examples of elements in this space.

Proposition 10.19 Assume §2 is an open set of finite measure, and g and f1,..., f, are
functions in L*(Q2). Then

6= 30) = [ g(alote)+ Y 1) o

is i L>71(Q).

Proof. According to the Cauchy-Schwarz inequality, we have

Ao </]u 2+ [Vau(z) \de) (/\g y?+|zfj |dx> c

10.2 The weak Dirichlet problem

In this section, we introduce elliptic operators. We let A(x) be function defined on an
open set 2 and we assume that this function takes values in n x n-matrices with real
entries. We assume that each entry is Lebesgue measurable and that A satisfies the

symmetry condition
A=A (10.20)

and ellipticity condition, for some A > 0,

MNEP < A@)E-E <A, €eRM, z e (10.21)
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We say that u is a local weak solution of the equation div A(x)Vu = f for f € L>~1(Q)
if w is in L;;}(Q) and for all test functions ¢ € D(S), we have

_ /Q A(2)Vu(z) - Vo(z) de = f(9).

Since the derivatives of u are locally in L?, we can extend to test functions ¢ which are
in Lo (Q) and which (have a representative) which vanishes outside a compact subset of
Q). However, let us resist the urge to introduce yet another space.

Statement of the Dirichlet problem. The weak formulation of the Dirichlet problem
is the following. Let g € L*»'(Q) and f € L*~1(f2), then we say that u is a solution of
the Dirichlet problem if the following two conditions hold:

u € L*1() (10.22)
u—ge L) (10.23)
— /Q A(z)Vu(z)Vo(x)de = f(¢) ¢ € L2 (Q). (10.24)

Note that both sides of the equation (10.24) are continuous in ¢ in the topology of
L' (). Thus, we only need to require that this hold for ¢ in a dense subset of L3 ().

A more traditional way of writing the Dirichlet problem is, given g and f find u which
satisfies

div AVu = f, in €2
u=g, on OS2

Our condition (10.24) is a restatement of the equation, div AVu = f. The condition
(10.23) is a restatement of the boundary condition v = f. Finally, the condition (10.22)
is needed to show that the solution is unique.

Theorem 10.25 If ) is an open set of finite measure and g € L*>'(Q) and f € L>71(Q),
then there is exactly one weak solution to the Dirichlet problem, (10.22-10.24). There is
a constant C(A\,n,Q) so that the solution u satisfies

lullz21) < Clgllz2r@) + 1 fllz2-1(e)-

Proof. FExistence. If u € Lg’l(ﬂ) and n > 3 then Holder’s inequality and then the
Sobolev inequality of Theorem 8.22 imply

/Q Ju(z)|? da < ( /ﬂ Ju(z)| 2 cla:)lZ m(Q)2™ < Cm(Q)¥/" /Q Vu(z)|? da.
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If n = 2, the same result holds, though we need to be a bit more persistent and use
Holder’s inequality, the Soboleve inequality and Holder again to obtain:

[ ([ were) more < ([ g mor

< /Q|Vu(:z:)|2dx m(Q).

Note that in each case, the application of the Sobolev inequality on R™ is allowed because
L' (Q) may be viewed as a subspace of L*!(Q) by extending functions on Q to be zero
outside €2. Thus we have

[ull 2y < Cm()Y"™ V| L2 (0. (10.26)

Next, we observe that the ellipticity condition (10.21) implies that

A /Q Vu(@)]? < /Q A)Va(z)Vi(z) de < A1 /Q V()| da. (10.27)

We claim the expression

/QA(:L')Vu(:U)VTJ(:c) dx (10.28)

provides an inner product on Lg’l(Q) which induces the same topology as the standard
inner product on Ly (Q) € L>'(Q) defined in (10.4). To see that the topologies are the
same, it suffices to establish the inequalities

/Q |Vu(z)|? + |u(x)]? de < X711 4+ Cm(Q)*™) / A(x)Vu(z)Viu(x) dx

Q

and that
/Q A)Vau(2)Vi(z) de < A~ /Q V(@) dz < A1 /Q V(@) + [u(z)]? de.

These both follow from the estimates (10.26) and (10.27). As a consequence, standard
Hilbert space theory tells us that any continuous linear functional on L(Q)’I(Q) can be
represented using the inner product defined in (10.28). We apply this to the functional

65— /Q AVGVddr — f(0)
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and conclude that there exists v € L2 (Q) so that

| A@To@) Vo) de =~ [ A@Vo@)Vola)da = 1(6). o€ L3,(@). (1029)

Q

Rearranging this expression, we can see that u = g+ v is a weak solution to the Dirichlet
problem.

Uniqueness. If we have two solutions of the Dirichlet problem u; and wuo, then their
difference w = u; — uy is a weak solution of the Dirichlet problem with f = ¢ = 0. In
particular, w is in L)' (Q) and we can use @ as a test function and conclude that

/A(m)Vw(:p) -Vw(z)dr = 0.

Thanks to the inequalities (10.26) and (10.27) we conclude that

/ lw(x)|? dw = 0.
Q
Hence, u; = us.

Stability. Finally, we establish the estimate for the solution. We replace the test
function ¢ in (10.29) by v. Using the Cauchy-Schwarz inequality gives

/QAVU Vo de < X0l 201V gllz2a@) + [l 0]l 120 q)-

If we use that the left-hand side of this inequality is equivalent with the norm in LS’I(Q),
cancel the common factor, we obtain that

[oll 210y < Cllgllzr ) + 1 llz2 1@
We have u = v 4 ¢g and the triangle inequality gives
ull2r@) < llgllzzr@) + [0l 20 g
so combining the last two inequalities implies the estimate of the theorem. 1

Exercise 10.30 (Dirichlet’s principle.) Let g € L**(Q) and suppose that f = 0 in the
weak formulation of the Dirichlet problem.
a) Show that the expression
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attains a minimum value on the set g+ Ly (Q) = {g+v : v € LY (Q)}. Hint: Use the
foil method. This is a general fact in Hilbert space.

b) If w is a minimizer for I, then w is a weak solution of the Dirichlet problem,
div AVu =0 and u = g on the boundary.

c) Can you extend this approach to solve the general Dirichlet problem div AVu = f
in Q and u = g on the boundary?
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Chapter 11

Inverse Problems: Boundary
identifiability

11.1 The Dirichlet to Neumann map

In this section, we introduce the Dirichlet to Neumann map. Recall the space LY/ 2(00)
which was introduced in Chapter 10. We let € be a bounded open set, A a matrix which
satisfies the ellipticity condition and given f in L*Y/2(d%2), we let u = u; be the weak
solution of the Dirichlet problem

{ div AVu = 0, on € (11.1)

u=f, on 0.

Given u € L*!(Q) we can define a continuous linear functional on L*!(Q) by

¢—>/§2A(x)Vu(a:)V¢(a:) dz.

If we recall the Green’s identity (10.3), we see that if u and A are smooth, then
/ A(z)Vu(z) - v(x)p(z) do(x) = / A(x)Vu(z)Vo(x) + ¢(z) div A(x)Vu(z) dx.
o9 Q

Thus, if u solves the equation div AVu = 0, then it reasonable to define AVu - v as a
linear functional on L>'/2(9Q) by

AV - 1(6) = / A)Vau(z) - Vo) de. (11.2)

Q

109
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We will show that this map is defined on L*/2(99) The expression AVu - v is called the
conormal derivative of u at the boundary. Note that it is something of a miracle that we
can make sense of this expression at the boundary. To appreciate that this is surprising,
observe that we are not asserting that the full gradient of u is defined at the boundary,
only the particular component AV - v. The gradient of u may only be in L*(Q) and
thus there is no reason to expect that any expression involving Vu could make sense on
the boundary, a set of measure zero.

A potential problem is that this definition may depend on the representative of ¢
which is used to define the right-hand side of (11.2). Fortunately, this is not the case.

Lemma 11.3 Ifu € L*'(Q) and u is a weak solution of div AVu = 0, then the value of
AVu - v(¢) is independent of the extension of ¢ from 02 to Q.
The linear functional defined in (11.2) is a continuous linear functional on L>Y/2(0Q).

Proof. To establish that AVu - v is well defined, we will use that u is a solution of
div AVu = 0. We choose ¢, ¢y in L>'(Q) and suppose ¢; — ¢ € L7 (Q). According to
the definition of weak solution,

/Q A(2)Vu(z) - V(1(x) — bola)) dz = 0.

To establish the continuity, we need to choose a representative of ¢ which is close to
the infinum in the definition of the L*!/2norm (see (10.13)). Thus we need ||¢||r21(q) <
2||7¢|| f2.1/2(50)- Here, 7¢ denotes the restriction of ¢ to the boundary. With this choice
of ¢ and Cauchy-Schwarz we have

[AVu - v(9)] < CllVull 2|Vl ).
This inequality implies the continuity. 1

We will define L>~1/2(9€2) as the dual of the space L*'/2(9€2). Now, we are ready to
define the Dirichlet to Neumann map. This is a map

Ag: LPY2(Q) — L>712(00)
defined by
Auf = AVu - v

where u is the solution of the Dirichlet problem with boundary data f.
The traditional goal in pde is to consider the direct problem. For example, given
the coefficient matrix A, show that we can solve the Dirichlet problem. If we were more
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persistent, we could establish additional properties of the solution. For example, we could
show that the map A — A4 is continuous, on the set of strictly positive definite matrix
valued functions on (2.

However, that would be the easy way out. The more interesting and difficult problem
is the inverse problem. Given the map A 4, can we recover the coefficient matrix, A. That
is given some information about the solutions to a pde, can we recover the equation. The
answer to the problem, as stated, is no, of course not.

Exercise 11.4 Let Q) be a bounded domain and let F : Q — Q be a CY(Q) diffeomorphism
that fixes a neighborhood of the boundary. Show that if A gives an elliptic operator div AV
on ), then there is an operator div BV so that

divAVu =0 < divBVuoF =0.

As a consequence, it is clear that the maps Ay = Ag. Hint: See Lemma 11.10 below for
the answer.

Exercise 11.5 Show that the only obstruction to uniqueness is the change of variables
described in the previous problem.

Remark: This has been solved in two dimensions, by John Sylvester [35]. In three
dimensions and above, this problem is open.

Exercise 11.6 Prove that the map A — A4 is continuous on the set of strictly positive
definite and bounded matriz-valued functions. That is show that

HAA - ABHE(L2,1/27L2,71/2) S C)\HA - BHOO
Here, || - || z(z21/2,12-1/2) denotes the norm on linear operators from L212 to L2712,

a) As a first step, show that if we let ua and ug satisfy div AVus = div BVug =0
i an open set Q0 and ug = ug = f on 0N, then we have

/Q Vun — Vusl dz < C| ]l zusson|lA — Bl

Hint: We have div BVua = div (B — A)Vuy since ua is a solution.
b) Conclude the estimate above on the Dirichlet to Neumann maps.
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However, there is a restricted version of the inverse problem which can be solved. In
the remainder of these notes, we will concentrate on elliptic operators when the matrix
A is of the form A(z) = ~y(x)I where [ is the n x n identity matrix and ~(z) is a scalar
function which satisfies

A< y(z) <At (11.7)

for some constant A > 0. We change notation a bit and let A, be the Dirichlet to
Neumann map for the operator div~yV. Then the inverse conductivity problem can be
formulated as the following question:

Is the map v — A, injective?

We will answer this question with a yes, if the dimension n > 3 and we have some rea-
sonable smoothness assumptions on the domain and . This is a theorem of J. Sylvester
and G. Uhlmann [36]. The following year, closely related work was done by Henkin and
R. Novikov [17, 23]. One can also ask for a more or less explicit construcion of the inverse
map. A construction is given in in the work of Novikov and the work of A. Nachman
[22] for three dimensions and [21] in two dimensions. This last paper also gives the first
proof of injectivity in two dimensions. My favorite contribution to this story is in [9].
But this is not the the place for a complete history.

We take a moment to explain the appearance of the word conductivity in the above.
For this discussion, we will assume that function v and 7 are smooth. The problem we
are considering is a mathematical model for the problem of determining the conductivity
~ by making measurements of current and voltage at the boundary. To try and explain
this, we suppose that u represents the voltage potential in €2 and then Vu is the electric
field. The electric field is what makes electrons flow and thus we assume that the current
is proportional to the electric field, J = vVu where the conductivity 7 is a constant of
proportionality. Since we assume that charge is conserved, for each subregion B C (2,
the net flow of electrons or current through B must be zero. Thus,

0= / YVu(z) - v(z)do(x).
oB
The divergence theorem gives that
0 :/ v(z)Vu(z) - v(z) do(x) :/ divy(z)Vu(x) d.
oB B

Finally, since the integral on the right vanishes, say, for each ball B C €2, we can conclude
that divyVu =0 in Q.
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11.2 Identifiability

Our solution of the inverse conductivity problem has two steps. The first is to show that
the Dirichlet to Neumann map determines v on the boundary. The second step is to
use the knowledge of v on the boundary to relate the inverse conductivity problem to a
problem in all of R™ which turns out to be a type of scattering problem. We will use the
results of Chapter 9 to study this problem in R".

Theorem 11.8 Suppose that 0 is C1. If v is in C°(Q) and satisfies (11.7), then for
each x € 0F), there exists a sequence of functions uy so that
y(z) = A}l_l}éo Aun(ay).

Theorem 11.9 Suppose 2 and v are as in the previous theorem and also OS) is C? and
v is in CH(Q). If e is a constant vector and uy as in the previous theorem, then we have

Vv(z)-e= lim (7(:L‘)|VUN(x)|Qe -v(x) — QReW(m)au—N(x)e . Vu(m)) do.
N-oo Jaq v

The construction of the solutions uy proceeds in two steps. The first step is to write
down an explicit function which is an approximate solution and show that the conclusion
of our Theorem holds for this function. The second step is to show that we really do have
an approximate solution. This is not deep, but requires a certain amount of persistence.
I say that the result is not deep because it relies only on estimates which are a byproduct
of our existence theory in Theorem 10.25.

In the construction of the solution, it will be convenient to change coordinates so that
in the new coordinates, the boundary is flat. The following lemma keeps track of how
the operator div~yV transforms under a change of variables.

Lemma 11.10 Let A be an elliptic matriz and F : Q' — Q be a C*(Q)-diffeomorphism.
We have that div AVu = 0 if and only if div BVuo F where

B(y) = |det DF(y)|DF~'(F(y))' A(F(y))DF ' (F(y)).

Proof. The proof of this lemma indicates one of the advantages of the weak formulation
of the equation. Since the weak formulation only involves one derivative, we only need
to use the chain rule once.

We use the chain rule to compute
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This is valid for Sobolev functions also by approximation (see Lemma 10.11). We insert
this expression for the gradient and make a change of variables = F(y) to obtain

/Q A(z)Vu(z) - Vo(z) d
= / A(F(y))DF 1 (F(y))V(uo F(y)) - DF~(F(y))V(¢ o F(y))| det DF(y)| dy
= /Q | det DF (y)|DF ™ (F(y)) A(F(y)) DF~ (F(y))V(uo F(y)) - V(o F(y)) dy.

This last integral is the weak formulation of the equation div BVu = 0 with the test
function ¢ o F'. To finish the proof, one must convince oneself that the map ¢ — ¢ o F
is an isomorphism! from L3 (Q) to Lo (). 1

Exercise 11.11 Figure out how to index the matrix DF~! so that in the application of
the chain rule in the previous Lemma, the product DF =1V (uo F) is matriz multiplication.
Assume that the gradient is a column vector.

Solution The chain rule reads

) 3G, u

(%Uiu ° G N 8:)&1 81’]- ° G
Thus, we want
0G;
DG);; = —2.
( G)l] a:pl

In the rest of this chapter, we fix a point x on the boundary and choose coordinates
so that x is the origin. Thus, we suppose that we are trying to find the value of «
and Vv at 0. We assume that 9Q is C' near 0 and thus we have a ball B,(0) so that
By (0) N O = {(2',z,) : , = &(2)} N By (0). Welet x = F (v, yn) = (Y, 0(Y) + yn)-
Note that we assume that the function ¢ is defined in all of R*~! and thus, the map F is
invertible on all of R". In the coordinates, (v, y,), the operator divyV takes the form

divAVu =0

with A(y) = v(y)B(y). (Strictly speaking, this is v(F(y)). However, to simplify the
notation, we will use y(z) to represent the value of v at the point corresponding to z

L An isomorphism for Banach (or Hilbert spaces) is an invertible linear map with continuous inverse.
A map which also preserves the norm is called an isometry.
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in the current coordinate system. This is a fairly common convention. To carry it out
precisely would require yet another chapter that we don’t have time for...) The matrix
B depends on ¢ and, by the above lemma, takes the form

. | P ~Vo(y')
Bly) = ( Vo) 1+ Vo)) > '

Apparently, we are writing the gradient as a column vector. The domain €’ has 0 on the
boundary and near 0, 9’ lies in the hyperplane y, = 0 and §’ lies in the regions ¥, > 0.
We introduce a real-valued cutoff function n(y) = f(v')g(y.) where f is supported in
|y'| < 2 and is normalized so that

/ fy)dy =1 (11.12)
RTL*I

and so that ¢g(y,) = 1 if |y,| < 1 and ¢(y,) = 0 if |y,| > 2. Our next step is to set
nn(x) = NO=D/An(NY2y). We choose a vector a € R"™ and which satisfies

B0)a-e, = 0 (11.13)
B0)a-a = B(0)e, - e,. (11.14)

We define Ey by
En(y) = N2 exp(=N(yn +ia - y))

and then we put
on(y) = v (y) En(y). (11.15)

The function vy is our approximate solution. The main facts that we need to prove
about vy are Lemma 11.18 and Lemma 11.25 below. Lemma 11.25 asserts that vy is an
appoximate solution of an elliptic equation. To visualize why this might be true, observe
that E is a solution of the equation with constant coefficients B(0). The cutoff function
oscillates less rapidly than Ey (consider the relative size of the gradients) and thus it
introduces an error that is negligible for N large and allows us to disregard the fact that
FE is not a solution away from the origin.

Our proof will require yet more lemmas. The function vy is concentrated near the
boundary. In the course of making estimates, we will need to consider integrals pairing
vy and its derivatives against functions which are in Lg’l(Q). To make optimal estimates,
we will want to exploit the fact that functions in LS’I(Q) are small near the boundary.
The next estimate, a version of Hardy’s inequality makes this precise. If we have not
already made this definition, then we define

0(z) = inf |o —yl.
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The function ¢ gives the distance from z to the boundary of €.

Lemma 11.16 (Hardy’s inequality) a) Let f be a C' function on the real line and sup-
pose that f(0) =0, then for 1 < p < oo,

= FO 0 [
/0' |dt5p/0 PPt

t

b) If f is in LY (), then

/Q f;(x)

(z)
Proof. a) We prove the one-dimensional result with p < oo first. We use the fundamental
theorem of calculus to write

d < C/Q V@) + (@) da.

fo=— [ £)as

Now, we confuse the issue by rewriting this as
1_ 1 ds
70 =[x 19577 (5)

= /K(t/s)sl/pf'(s) % (11.17)

where K (u) = ™7 x(1,00)(u). A computation shows that

| xa = [ K v

which will be finite if p > 1. Thus, by exercise 4.5 we have that g — [ K(t/s)g(s)ds/s
maps LP(ds/s) into itself. Using this in (11.17) gives

([T )" o[ vra) "

Which is what we wanted to prove. The remaining case p = oo where the LP norms must
be replaced by L* norms is easy and thus omitted.

b) Since D(Q) is dense in Lg™(Q), it suffices to consider functions in D(Q). By a
partition of unity, as in Lemma 10.8 we can further reduce to a function f which is
compactly supported B, (z) N 2, for some ball centered at x on the boundary, or to a
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function f which is supported at a fixed distance away from the boundary. In the first
case have that 02 is given by the graph {(v',yn) : yn = &(y')} near z. Applying the
one-dimensional result in the y,, variable and then integrating in the remaining variables,
we may conclude that

|f(y)]? ou )
—=d 4 —_— dy.
/mBr(x) (yn — 0(¥'))? V= /QHBT( ) OYn W) dy

This is the desired inequality once we convince ourselves that (y, —&(y’))/0(y) is bounded
above and below in B,(x) N .

The second case where f is supported strictly away from the boundary is an easy
consequence of the Sobolev inequality, Theorem 8.22, because 1/§(x) is bounded above
on each compact subset of €. 1

The following Lemma will be useful in obtaining the properties of the approximate
solutions and may serve to explain some of the peculiar normalizations in the definition.

Lemma 11.18 Let vy, Ex and ny be as defined in (11.15). Let § be continuous at 0
then

Jim N [ B (w)Pe ™ dy = 5(0)/2 (11.19)

If k > —1 and 1 € D(R"), then for N sufficiently large there is a constant C' so that
] W)’ A(N2y)e=2Nom gy < CNZ R, (11.20)

Proof. To prove the first statement, we observe that by the definition and the normal-
ization of the cutoff function, f, in (11.12) we have that

n—1

[oatwpesmay = 57 [ pniype sy
! {yyn>0}

+NT (g(N2y,)2 — 1) f(N2y/)2e=2Nom gy,
{y:yn>0}

The first integral is 1/(2) and the second is bounded by a multiple of (2N)~!e=2N""*.
The estimate of the second depends on our assumption that g(t) = 1 for ¢ < 1. Thus,
we have that

hm N [ nn(y)?e *Nmdy = 1/2.
Q/
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Using this to express the % as a limit gives

550 = Jim N [ ey < Jim ¥ [ 180) =500

N—oo N—oo

XnN(y)Ze’QNy“dy
< lim sup Iﬁ() Byl

N=00 41y <a1/2N-1/2) 2

XN | ny(y)*e Vo dy.
o
Now the continuity of g implies that this last limit is 0.
The inequalities in the second statement follow easily, by observing that for N suffi-
ciently large, we have §(y) = y, on the support of 7(N'/2y). If supp 7 C Bg(0), then we
can estimate our integral by

IN

[owraoe e =g < gk [ [T e agay,
/ y/:y/< —-1/2

< CON'" 1k,

We can now evaluate a limit involving our approximate solution.

Lemma 11.21 With Q' and vy as above, suppose B is a bounded function on ' which
18 continuous at 0, then

lim | 5)B)Von(v) - Vox(y) dy = SOBO)e, - .

N—o0

Proof. Using the product rule, expanding the square and that ny is real valued gives
[ BBV Vo) dy = N [ 5B at B, eyl dy
2 [ B BET) - eoav(we ™ dy

N o B(y)B(y)Vn(y) - Vin (y)e >N dy
— [+ 1II+I1II.
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By (11.19) of our Lemma 11.18, we have that

lim I = B(0)(B(0)en - ). (11.22)

N—oo

where we have used (11.14) to replace B(0)a - a by B(0)e,, - €,. The integral 11 can be
bounded above by

1< NGB [ (TmN (N gl dy < N (11.23)
Q/

Here, we are using the second part of Lemma 11.18, (11.20). The observant reader will
note that we have taken the norm of the matrix B in the above estimate. The estimate
above holds if matrices are normed with the operator norm—though since we do not care
about the exact value of the constant, it does not matter so much how matrices are
normed.

Finally, the estimate for /11 also follows from (11.20) in Lemma 11.18 as follows:

11 < N3 ||8B| . /Q () (N2) PN dy < ON. (11.24)

The conclusion of the Lemma follows from (11.22-11.24). 1

Now, we can make precise our assertion that vy is an approximate solution of the
equation div AVwv = 0.

Lemma 11.25 With vy and Q' as above,

]\}1_1}1;0 ” div AVUNHLQ,—l(Q/) =0.

Proof.  'We compute and use that div A(0)VEyN = 0 to obtain

divA(y)Von(y) = div(A(y) — A(0))Von(y) + div A(0)Vuy(y)
= div(A(y) — A(0))Vun(y)
+2A(0)Vnn(y)VEN(y) + Ex div A(0) VN (y)
= I+ 114111

In the term I, the divergence must be interpreted as a weak derivative. To estimate the
norm in L*>71(Q), we must pair each of I through ITT with a test function ¢. With I,
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we use the definition of weak derivative and recall that ny is supported in a small ball
to obtain

<

()] = ] [~ 40) V() - vo) dy
sup  |A(y) — AO)[[|Von]l 2| V|| 20

|y\<23/2N—1/2

This last expression goes to zero with N because A is continuous at 0 and according to
(11.21) the L*(Q) of the gradient of vy is bounded as N — 0.

To make estimates for /1, we multiply and divide by d(y), use the Cauchy-Schwarz
inequality, the Hardy inequality, Lemma 11.16, and then (11.20)

TIW) = | | 2A0)Vnx(y)VEN(y)v(y) dy|
2 2 1/2
M nTjLB 2 1/2 26_21\/% /

< / | 5(y) dy) (N / O I(Vm) (V)] dy)

< CN_1/2||¢||L3’1(Q’)'

Finally, we make estimates for the third term

111(0)| = \ [ Bxwaiv A0 n () dy\

< </ﬂf (v) 2 dy) 1/ <N"'2H /,5(y)2|(divA(O)an)(Nl/zy)Pe—?Nyn dy) 1/2

CllYll 2@y N

Y(y)
5

IN

Now, it is easy to patch up vy to make it a solution, rather than an approximate

solution.

Lemma 11.26 With Q' and B as above, we can find a family of solutions, wy, of
div AVwy = 0 with wy — vy € Ly (') so that

lim [ B(y)B(y)Vwn(y) - Von(y) dy = 5(0)B(0)ey, - en.

N—oo Q/
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Proof. According to Theorem 10.25 we can solve the Dirichlet problem

div AVoy = —div AVuy, in
oy =0, on 0N

The solution vy will satisfy
]\}1_1;1(1)0 ||V17NHL2(Q,) S ]\}1_1;[;0 CH div Aan||Lz,_1(Q/) =0 (1127)

by the estimates from the existence theorem, Theorem 10.25 and the estimate of Lemma
11.25.

If we set wy = vy + Uy, then we have a solution with the correct boundary values
and by (11.27) and Lemma 11.21

lim [ B(y)B(y)Vwn(y) Von(y)dy = lim [ AVon(y) - Von(y) dy

N—oo Q N—oo Q

= [(0)B(0)ey, - €.

We will need another result from partial differential equations—this one will not be
proven in this course. This Lemma asserts that solutions of elliptic equations are as
smooth as one might expect.

Lemma 11.28 If A is matriz with C'(Q) entries and Q0 is a domain with C?-boundary,
then the solution of the Dirichlet problem,

div AVu =0 mn <)
u=f on 0S)

will satisfy
[ullr22(0) < Ol fllz22¢0)-

As mentioned above, this will not be proven. To obtain an idea of why it might
be true. Let u be a solution as in the theorem. This, we can differentiate and obtain
that v = OJu/0x; satisfies an equation of the form divyVv = div(9y/0z;)Vu. The
right-hand side is in L>~! and hence it is reasonable to expect that v satisfies the energy
estimates of Theorem 10.25. This argument cannot be right because it does not explain
how the boundary data enters into the estimate. To see the full story, take MA633.

Finally, we can give the proofs of our main theorems.
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Proof of Theorem 11.8 and Theorem 11.9. We let F : € — Q be the diffeomorphism
used above and let uy = wy o F71/(1+|V¢(0)|?). According to the change of variables
lemma, uy will be a solution of the original equation, divyVuy = 0 in 2. Also, the
Dirichlet integral is preserved:

1

T+ VoO)P Jo B(y)B(y)Vuwn(y) - Vion(y) dy.

/ B(x)|Vuy(2)|? de =
Q

Thus, the recovery of v at the boundary follows from the result in €2’ of Lemma 11.26
and we have
7(0) = lim [ v(z)|Vuy(2)|*dz = lim A, (uyx)(iy).
N—oo Jq N—00

For the proof of the second theorem, we use the same family of solutions and the
Rellich identity [25]:

ou

/8(2 y(z)e - v(z)|[Vuy(z)|* — 2Re 7(:6)5(:6) e Viu(x)dr = /Qe - Vy(2)|Vuy (z)]? dz.

This is proven by an application of the divergence theorem. The smoothness result in
Lemma 11.28 is needed to justify the application of the divergence theorem: we need to
know that uy has two derivatives to carry this out. The full gradient of uy is determined
by the boundary values of uy and the Dirichlet to Neumann map.
By Lemma 11.21, if v € C'(2), we can take the limit of the right-hand side and
obtain that
Oy

dz;

(0) = 1%0/93—92(@|qu($)|2@.

Corollary 11.29 If we have a C? domain and for two C*(Q) functions, A,, = A,, then
Y1 = Y2 on the boundary and Vs, = Vv, on the boundary.

Proof. 'The boundary values of the function uy are independent of ;. The expression
A un(ay) in Theorem 11.8 clearly depends only on uy and the map A,. The left-hand
side Theorem 11.9 depends only on v and Vuy. Since Vuy which can be computed from
uy and the normal derivative of uy. Hence, we can use Theorem 11.9 to determine Vv~
from the Dirichlet to Neumann map. 1
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Exercise 11.30 If v and 092 are reqular enough, can we determine the second order
derivatives of v from the Dirichlet to Neumann map?

It is known that all derivatives of u are determined by the Dirichlet to Neumann
map. I do not know if there is a proof in the style of Theorems 11.8 and 11.9 which tell
how to compute second derivatives of v by looking at some particular expression on the
boundary.

Exercise 11.31 If one examines the above proof, one will observe that there is more to
be done. We made an arbitrary choice for the vector a and used « in the determination of
one function, v. We can use this observation to study boundary values of conductivities

that are more general than vI.
See the work of Alessandrini and Gaburro [2]. and Kang and Yun [19].

11.3 Notes

A uniqueness result for the boundary values of a conductivity was given by Kohn and
Vogelius [20]. They show that if two Dirichlet to Neumann maps are equal, then all deriva-
tives of the Dirichlet to Neumann map agree at the boundary. Sylvester and Uhlmann
[37] give a constructive result. That is they show how to recover the conductivity from
the Dirichlet to Neumann map, at least if the domain sufficiently smooth. Alessandrini
[1] gives a proof that requires less regularity. The argument presented in this chapter is
taken from the work of the author [6].
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Chapter 12

Spaces adapted to the operator
A+2(C-V

In this section, we show that we can recover the conductivity from the Dirichlet to
Neumann map when the conductivity is continuously differentiable. The result and the
method we give for recovery are from a recent manuscript of Haberman and Tataru, [15].
Haberman and Tataru build on the fundamental work of Sylvester and Uhlmann [36] who
observed that a crucial step in solving the inverse problem is constructing solutions of a
Schrodinger equation which are asymptotic to complex exponentials at infinity. Thus we
consider harmonic exponentials of the form exp(z- () with ( e V={( € C":(-{ =0}.
If we conjugate the Laplacian by exp(x - (), we obtain the operator

A+20-V.

The first innovation of Haberman and Tataru is to consider spaces which are adapted to
the operator in the style of Bourgain’s X*° spaces.

12.1 Spaces adapted to A +2( -V

Thus, we let p¢(§) = —|&|* + 2i¢ - € be the symbol of the operator A +2¢ - V. We define
the space X é? to be closure of the Schwartz space in the norm

I = [ IFOPlpe()P de

We will also consider the inhomogeneous version of this space, X, é’ which is normed by

17 = [ IFOPACI+ (€)™ de

125
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We will restrict our attention to b = £1/2. It is clear that the operator A 4+ 2(¢ -V :
X Cl/ 5 X ¢ 2 is an isomorphism. Thus, the interesting part of studying these spaces
will the study of operator u — qu on these spaces.

Our first result gives local regularity of the functions in the space Xé/ . We will
need the following simple result on maps between weighted L? spaces. If w is a non-
negative, Borel measurable function (or weight), we let L?(w) denote the collection of

Borel measurable functions for which the norm
1 = | FOFw(E) de

is finite.

Lemma 12.1 Let ¢ be in L*(R") and let v and w be weights on R"™. Define T f by

Tf(E) = - (& —n)f(n)dn.

We have
1/2
1T f 1|2y < AlDIE N1l 20

where A = min(A;, Ay) and Ay and Ay are given by

2 = su — @
At = s [ ot =) S5y
A = s / |¢<s—n>|%d§.

Proof. Tt is easy to see that the boundedness of T : L?(v) — L?*(w) is equivalent to
showing that S : L? — L? where S is the map

SHE) = [ wl€)26(¢ ~ n)otn) " fn) dn.

In addition, the norm of T" on the weighted spaces is equal to the norm of S on the
unweighted space.
To estimate ||.S f|| 12, we use the Cauchy-Schwarz inequality and then Tonelli to obtain

ISf2. < / [ b6 — mpolm) ™2 dnPule) de
n RTL

/Rn\f(n)\Q/|¢(§—n)\@d§dn/m ()| .

v(n)

IA



12.1. SPACES ADAPTED TO A+2(-V 127

Thus, we have that the operator norm ||S||zz2) is majorized by [|¢| ;1 A2. An identi-
cal argument gives that the norm of S* is controlled by H(le/Q Ay. Since ||S|| g2y =
15122y = 17| £(22(0),2(w))» the Lemma follows.

Our next Lemma shows that functions in the space X Cl/ 2 are locally in L?. For this
Lemma, we introduce operators H and L which give the high and low-frequency parts of
u. We let ¢ be smooth a function which is 1 for |§| < 1, 0 for [§] > 2. Given ¢, we define

= (6(-/16/¢))fy and Hf = f — Lf.

We note that the operator L has the property that

aOé

||axaLf||L2(R") < IS Nl 2 (12.2)

Lemma 12.3 Let ¢ be a Schwartz function and suppose that { € V, with |(| > 1. then
we have

kungl/2 < CHUHXEuz (12.4)

[ulg < Cllullgo (125)

[ull2 < C|C|_1/2||U||XC1/2 (12.6)

IVH@le < Clulgs (127

IH @l < CIE ul g2 (12.8)

The constant depends on n and v but is independent of the dimension.

Proof. If we take the Fourier transform of w1, we obtain the convolution of 4 and 0.
Thus (12.4) will follow from Lemma 12.1, if we can show that

[ ot mii e <. (129)

To establish (12.9), we write pc(n) = —|n— &+ &> +2i(n— & +&) = —[n — &> —2¢- (n —
€) +2i¢- (n— &) + pc(€) and thus we have expression in (12.9) is controlled by

1+ b6 — ol + ICliE —l _ Jelle—nl
PRI G NG

+ 1) dé. (12.10)
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We fix n and we will establish the estimate

19— i
L we=c (12.11)

The remaining terms in (12.10) are handled in a similar manner.
To establish (12.11), we let By, = {£ : | —n| < 2} then put Ay = By \ Bi—y. Using
Lemma 9.3 and that ¢ is in S(R"), we obtain for any N

/ [ —nlicl / [o(g =il nIICI / (g~ 77||C|
s VIR ge d§+z d¢
n Bo

12431 G G
8. Z ok((n—1)-N
k=0

If we choose N > n — 1, we obtain the desired bound.
We turn to the proof of the remaining estimates. The estimate (12.5) is the transpose
of (12.4). The adjoint of the map Tu = u is T*u = Yu. As we know that T : Xo vz,

X{lﬂ, it follows that 7" : Xcl/2 — Xcl/Q. The estimate (12.6) follows from (12.5) since we

have [¢['/2 < (I¢] + [p¢(€)])"/2.
Estimates (12.7-12.8) follow easily if we recall the definition of H and observe that

Ipc(€)] > 31€1 if [¢] > 4[¢]. '

IA

12.2 Estimates for potentials of negative order

Given a conductivity v which continuously differentiable and is one near infinity, we may
define a map m, : S(R") — S’(R") by

ma()(e) = = [ VT V(R e

When v has two derivatives, it is easy to see that m,(u) is the function qu where ¢ =
A/7/\/7- It is clear that the expression for mg(u)(v) can be extended to functions u

and v which lie in the Sobolev space L*'. Our next step is to study the expression

loc*
mg(u)(v) when u and v lie in XC/ . Note that because we assume that 7 is one near
infinity, it follows that ¢ is compactly supported. Thus if ¢ is a function which is one on
a neighborhood of the support of ¢, we have m,(u)(v) = my(vu)(pv). This observation
allows us to apply the estimates of Lemma 12.3.
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We introduce the Holder or Lipschitz spaces, W*>°(R"). If s > 0, we write s = k+ 0
with 0 < # < 1. The space of Holder continuous functions of order s is the collection
of functions u so that Z-u € L*(R") for |a| < k the derivatives of order k are Hélder
continuous (or Lipschitz) with exponent §. Thus, if

a function w is in W**°(R") if the norm defined below is finite
0“u 0“u
[uflwso@mny = Z ||@”L°°(Rn) + Z [%]0-
<k jal=k
Our main result is the following Theorem.

Theorem 12.12 Let {; € V, for j = 1,2 and suppose that |(1| = |(2| and suppose
0 €[0,1]. If y € WH0(R"), Vv is compactly supported, and v > c for some ¢ > 0,
then we have

ma00(0)] < Ceo(log urtsoceqren) Gl el ol

where the function w satisfies lim;_,o+ w(t) = 0.
In addition, if 8 = 0, we have

ma(0)(0)] < Ceoly, [l a0l g2

where lim,_,oc w(7, ) < limeo+ || logy — (log ) el[wrcomny-

Exercise 12.13 Let ¢ be a standard mollifier. Thus ¢ is supported in a ball of radius 1,
fBl(O) ¢dy =1, and ¢ € D(R"™). Set ¢ = € "¢, for e > 0. Let 6 be in (0,1]. Prove that
for a with |o| > 1, we have

_ algn O
€ 0||U/_u6||Loo(Rn) + el 0||%U6||Loo(Rn) < Cla, ¢)[uls.

Again, let 0 € (0,1]. Conversely, show that for any locally integrable function u, after
modifying u on a set of measure we have

o < sup(e = ey + € V)
€>
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Exercise 12.14 Let ¢ be a standard mollifier, set ¢.(x) = € "(x/€) and f locally inte-
grable, define f. = ¢. = f. Define

d = lim |If = £~

Suppose that f is compactly supported in R™. Show that d is the distance in L™ from f
to the continous functions. That is show that

d = nf{[|f = gll=@mn : g € C(R")}.
Our Theorem follows easily from the following Lemma.

Lemma 12.15 Let (; and ¢ lie in'V and (1| = (2|, suppose 6 € [0,1] and let f be a
vector-valued function in W (R™). Let ¢ be a Schwartz function and put u, = Yu.
Then we have

[V < ol gyl (12.16)
[ 1V < OV el gyl (1217)
[T < €5 o llul galel (12.18)

The constants depend on n, 0, and .

Proof. 'To prove (12.17), we integrate parts and use estimate (12.6) from Lemma 12.3.
To prove (12.16), we write uy = Hu, + Luy and vy, = Hvy, + Lvy and then

- V(ugpvy) dy = /f - V(HuyHvy + Huy Lvy + LugHvy + Lug Loy) dy.
R”

Thus, we have four terms to consider. For the term involving the product of high-
frequency terms, we use the Leibniz rule, the Cauchy-Schwarz inequality, and estimates
(12.7) and (12.8) to obtain

| . [V (HuyHuoy) dy| < 03_1HfHLw(R")HUHXCllmHUHXClZﬂ-
To estimate the mixed terms involving Hu,Lvy, we use the Leibniz rule, the Cauchy-
Schwarz inequality, and the estimates (12.2), (12.5), (12.7), and (12.8) to obtain

| . [ (LvyVHuy + HuyV Loy) dy|

< Ol fll oo @n) IV Huy || 2 gy | Lvg || L2 gy + | H gl L2mm) ||V Loy || 2@y

< Ol gl gyl
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Of course, the mixed term involving Lu,Hwv, can be handled by permuting v and v.
Finally, for the term involving Lu,Lv,, we observe that the Leibniz rule and estimate
(12.2) give

IV (Luy Lvg )| 1@y < ClC Lugl| 2y | Lvg| 2 @)

Now the estimate (12.6) gives

IV Ly Log)llr ey < Cllulgirellvll g

We turn to the proof of the third estimate (12.18). This follows by a simple inter-
polation argument. We let ¢. be a standard mollifier and set f. = ¢, * f. We observe
that for 0 < 6 < 1, we have ||f — fellremn) < C€| fllwocemny and ||V fe|lpomn) <
Ce?~ | fllwo.(rn)- Thus, using estimates (12.16) and (12.17), we have

/f - V(ugoy) dy = /(f —fo)- V(%W)der/fe - V(ugvy) dy
<C(€f + |§|_159_1)||f||we,oo(Rn)||U||X<11/2||U||X<l;2-
Choosing € = 1/s gives (12.18). 1
We now give the proof of the estimates of Theorem 12.12.

Proof of Theorem 12.12.  We choose a function ¢ € D(R") which is one on a neighbor-
hood of the support Vv. With w, = Yu, we have

YW g

(o) == [ DL T - T

Uy Uy dy

From the estimate (12.6), it is easy to see that

vy dy| < Cla| 1108 VAl el el

which is stronger than the conclusion of the Theorem. For the other term in my(u)(v),
we obtain the estimate

|| Vlog - V(ugwy) dy| < CIC Nog v/ llwroosqmm [ull vz lvll 12
R” 1 2

Finally, when log /7 is only Lipschitz (and compactly supported), we let (log /7).
denote a standard mollification of log /7. We add and subtract the smoothed out version
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of (log /7)., integrate by parts in the second term and use the estimates (12.18) and
(12.6) to obtain

| [ Vg7 - V(uyvy)dyl

Rn

<| - V(log /7 = (log v7)e) - V(ugvy) dyl + | | Allog(y/7)e) - (uyvy) dyl

R”

< C(IIV(log /7 — (log v/7)e) [z mn) + €' [¢] | A(log V)elloe@n)llull g llvll g2-

If we choose € = |¢|~'/2, then we obtain the last conclusion of the theorem. 1

12.3 An averaged estimate

We will construct solutions of the Schrédinger equation in the form exp(z - ¢)(1 + v)
where ( € V. The function ¢ will satisfy ¢ — Ge(q) = Ge(q) with Ge = (A+2¢- V)L

It is trivial to see that G : 1/ - X '/2 and Theorem 12.12 tells us that m, maps

Xcl/2 — XC Y2 1t remains to study the rlght hand side, G¢(¢). The new ingredient in
Tataru-Haberman’s argument is the following averaged estimate for this function.
Before stating the main lemma, we introduce some notation. For the remainder on
this chapter, we fix a vector k € R" and let P be a plane that is perpendicular to k (or
P may be an arbitrary plane if £ = 0). We let ¢; and es be an orthonormal basis for P

and define

e1(f) = ejcos(f) — eycos(d)
ex(f) = egsin(f) + ey cos(h)

For s > |k|, we let

G(s.0) = 361(9)+i(§—|— TR es(6)

Gls,0) = —ser(6) +ily — /5T~ RP Aes(6)

Lemma 12.19 Let A > |k| and fit v € S(R™). If f € L**(R"), 0 < § < 1, then for
7 =1 or2, we have

/ / 491 s db < CO0 RN o (12.20)
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If f € L?, then

1 22
X/ / HwVfH}_l/z dsdf = o(1), as A — oo.
o Ja ¢

Proof. We let (; = ¢ and give the proof in detail for . The proof for (, can be carried
by replacing the basis {e1,es} by {—ej, —ea}. We claim the following two estimates.

2w 2\
/0 /A HwVfH}C_l/stdG < OVl (12.21)

1 27 2
;/ / 1OV fI51pdsdd < CO|f|7 (12.22)
0 A <

To establish (12.21), we use (12.4) and the elementary estimate ||Vf||§(<_1/2 < ¢TIV fII3:

and then integrate in s and A.

The second estimate (12.22) is more interesting because it is not proved by integrating
a pointwise estimate. The average is substantially smaller than maximum. To establish,
(12.22), we begin by using (12.4) to replace the homogeneous space X{l/Q by the inho-

mogeneous space X - Y 2, then we use Plancherel’s theorem and divide the integral on R”
into three regions,

1 27 2\ 1 2 2\
A R Ry e T
2 9
i )
Y de dsdf
/ / /£|<16k pe(§) |+|C|| (O de ds
WS fopacasa
er<ioneL] [Pc(©]+ 1]

S AL e agasao
g2 16l lel>160k] [P(E)] +[C]
— [+ 1T+ 111 (12.23)

We use £+ denote the projection of & onto the plane P. Note that |£1|* = |e1(0) - €2 +

le2(0) - €17,
In the region || < 16|k|, we have

L

I <05
q

I£117:
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which is sufficient since our constants may depend on k.
To estimate I/, we will have to work harder. We change Varlables in the (s, ) integral

by setting t1 = Repc(§) = —[¢]* — k- & — \/s? — |k[*/4e2(0) - € and t, = Impc(§) =
2se1(0) - €. It is easy to compute J, the Jacobian of the map (s 0) —t as

ﬁ@(@ S 261(9) -§
— [k[?/4e1(0) - & —2sex(0)

45>
= 4y/s2 = [k[2/4]ex(0) - € + ——===le2(0) - €|*.
Vs? = [k[2/4
Under our assumption that s > A > |k|, we have that 2sv/3[¢1|? < J < (8s/v/3)|€4%.
We also have that the image of (A, 2)) x (0,27) under the map (s,80) — (t; + it2) lies in
a disk of radius 4\|¢+|. Thus, we have

J =

2 1€]?
Hgo/ fOF / dtd§<0f 2.
|§\2<16)\|§i\| © NEL? Ji<anjer 1t| 1711z

The integral in ¢ is taken over a disk centered at the origin as this disk gives the largest
value. This calculation gives the desired bound in the region {£ : [£]? < 16A|¢*|}. Finally,
when [€] > 16]k] and [€[2 > 16A/¢4] we have |pc(€)] > LI¢[? -+ [€](2lé] — IK]) + (H[¢[? —
ANEE]) > 1[¢]? and thus it is easy to see that I11 < C| f||3..

The first conclusion of the theorem follows by interpolating between (12.21) and
(12.22). See (4.9). To prove the second we write f = f. + (f — f.) where f, is a standard
mollification of f. Then from (12.21) and (12.22), we obtain

1 27 2\ )

If we let € = A~/2, the right-hand side goes to zero. 1

Theorem 12.24 Let v satisfy (11.7), suppose that v = 1 outside some compact set and
that Vv is in L*(R™). Let k and (;(s,0) be as in Lemma previous result. Then we have

1 2\ 2w
A 0 S

A—00

Proof. 'We may write A,/7/\/7 as div(Vlog./7) + |Vlog,/7]*. We may estimate the

average of the X&l/Q norm for the first term by Lemma 12.19. As |V log \/7]? is in L*(R"),
we may use (12.4) and the elementary inequality (|¢] + [pc(€)])™" < |¢|™* to conclude
that |4V log /7|? ||X_1/2 < [¢]7Y?||V log /7| r2rn). We may average this estimate to

obtain the desired hmlt
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12.4 Notes

The results of this chapter are taken from the work of Haberman and Tataru [15]. The
inverse conductivity problem or Calderén problem was introduced to the mathematics
community by A.P. Calderén in [10]. Sylvester and Uhlmann’s groundbreaking paper
[36] constructed the complex geometrical optics solutions and showed how they could be
used to solve the inverse conductivity problem. The work of Brown [7], Brown and Torres
8], and Panchenko, Péivirinta and Uhlmann [24] showed that the method of Sylvester
and Uhlmann could be used when the conductivity had 3/2 derivatives.
Y. Zhang helped to prepare the material in this chapter.
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Chapter 13

Inverse Problems: Global
uniqueness for C! conductivities

In this chapter, we assemble the results of the past few chapters to prove Haberman and
Tataru’s version of Sylvester and Uhlmann’s theorem [36].
We begin with an extension result.

Proposition 13.1 Let Q be a C'-domain. If v € CY(Q) is a conductivity satisfying
(11.7), there exists an extension Ey € C*(R™), Ev satisfies (11.7), and Ey = 1 outside
some compact set. In addition, the values of Ev in R™\ Q depend only on the boundary
values of v and V.

Remark. This may also be obtained as consequence of the Whitney extension theorem.
The Whitney extension theorems holds in a much more general class of domains.

Proof. We will extend log~ to give a function which is compactly supported in R™.
Taking the exponential gives the desired extension of .

Let R*{x : x, < 0}. Using a partition of unity and a change of variables, it suffices
to extend a function ¢ € C*(R") and is zero for x such that |x| > 1 to a function which
is O'! and compactly supported in R™.

To define the extension, we let 7 be a standard mollifier on R"™! and let 7, (z') =
z7"n(2' /x,) and we define E1¢ by

/ o @), Zn <0
E1¢($ ,l'n) B { (b(l'/, O) + mn(nxn * %(7 O))(%l), Tn >0

Note that the convolution in the definition of E;¢ is a convolution on R"~!. We put
E¢ = ¢ E1¢ where ¢ is in D(R"), ©» = 1 on B(0) and v is supported in B4(0).

137
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It remains to show that ¢ is C'. Thus, we need to show that the derivatives of E;¢

are continuous at z,, = 0. We compute the derivative with respect to z;, i =1,...,n—1
for z,, > 0. 5 5 5 5
¢ U ¢
S Bi0(@) = 52 0) + (), (L 0)(@)

Since the 0n/0z, has mean value zero, we have that
., 0n 8gb
lim (==, (0) (=) =0

0" 0w, 8xn
Next, we compute the derivative of E;¢ with respect to x,, and obtain

O ot a1 — (5 09 06
5 L0 20) = (e, % 5 Can)) (@) + (W, 5 5 (L 0) (@)

where ¢(2') = (1 — n)n(z’) + S0, xlax (2'). The integral of v is given by

0
Ydr' = / N, (') dx’ =0
R" 1 aIL‘n =1 Rn—l
Thus we have that the derivative OF;¢/0x,, is continuous at 0. ]

Lemma 13.2 Let n > 3, k € R", and for | = 1,2 suppose that v, satisfies (11.7),
Ve € L*R") and v, = 7o = 1 outside some compact set. Then we may find sequences
{712, CV, £=1,2 s0 that ¢ + (3 = ik and

Jim ol =0
Proof. The lemma follows immediately from Theorem 12.24. 1

Lemma 13.3 If v, € C'(R"), 7, satisfies (11.7) and v = 1 outside a compact set. Let
{Cg \ be as in the previous Lemma. We may find 4 € Xl/2 s0 that vy = % (1 + 1))

'm I . =
jh szHX;i/2 0

In addition, we have that ¢} € LyX(R™) and that
/va -Vody +my,(v)(¢p) =0, ¢» € D(R"). (13.4)

Remark. If a function v is in L
of the equation (A — q)v = 0.

>1and satisfies (13.4), we will say that v is @ weak solution
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Proof.  From the definition of the Xé’ norms, we have HGCfHX(}/z = HfHXgl/Q and by
Theorem 12.12, we have lim¢_,«, qu‘|£(XC1/27X<—1/2) = 0. Thus, we may find R so that
|G¢ o m‘”“L(Xcl/Z) < 1/2if |¢| > R. For such (, we have that (I — G om,)" exists and
is given by the series Z;’;D(GC om,)’. This series converges absolutely in the operator

norm on E(XE/Z) and we have ||(I — G¢ o mqg||£(X41/z <2.

)
Now we let {gg 321 be the sequences from Lemma 13.2. For j sufficiently large, we
set

wz = (I — GCZ o mqg)il(GCgQg).
By the observations of the previous paragraph,
. il < . - —0
Yo e < 2 i a1 = 0

It is straightforward to show that the corresponding v, is a solution of (A — g;)v, = 0 in
the sense of distributions. From (12.2) and (12.7), it follows that V; and hence Vuy is
in L? (R™). Hence, we may obtain the weak formulation of the equation (A — g;)v, = 0

given in (13.4). 1

Lemma 13.5 Suppose v, and v are two C*-conductivities, v, = Yo outside Q and v, =
vy = 1 outside a compact set and assume A, = A.,. Ifv, € L7L(R"), £ = 1,2, are
solutions of (A — qo)ve =0 in R™, then we have

Mg, (v1)(v2) = Mg, (v2)(v1). (13.6)

Proof. Let v satisfy v € C'(R") and (11.7). As usual, we let ¢ denote the potential
A\/7/\/7- We first observe that if v is a weak solution of (A —¢g)v = 0, then u = v/,/7 is
a solution of divyVu = 0. To see that ¢ be a test function from D(R") and let v = | /qu
and ¢ = /79 and use the product rule to obtain

| V) V() = VA () dy
- /R TVU- Vi + YTOVT - Va4 uVo/7 - V(y/70) — VA - V(yFui) dy
Since the map 1 — /7 is invertible on C'(R"), we have that

/w Vo — V7 -Vl F)dy=0, ¢eCR")
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if and only if
/ YWVu - Vody =0, ¢ € CHR™).

We turn to the proof of (13.6). We first observe that since 71 = v, in R™ \ €, it is
immediate that

V7 - V(v /v/m) dy = / . V72 - V(nve//72) dy. (13.7)

R™\Q

™\

To obtain the corresponding result for the integral over €2, we claim that

A, () (uz) = /Q Vo - Vs — V7, - V(o) /A1) dy.

We let 4y = v9,/71 then the product rule and the calculation in the previous paragraph
give that

/ Vo - Vug — V71 - V(vve/y/m) dy = / v1Vuy - Vg dy.
Q Q
By the Lemma below s — us lies in LS’I(Q) and u; is a solution divy;Vu; = 0 in €.
Thus,
/ ’71VU1 . Vﬂg dy = AWl (Ul)(UQ)
Q

If we switch 1 and 2, and use that A, (uq)(u2) = Ay, (u1)(uz) we obtain that

/ Vuy - Vuy =V /71 - V(v /y/M) dy = / Vi - Vug — V7 V(v1v2/y/72) dy. (13.8)
0 Q
Adding (13.8) and (13.7) gives (13.6). 1

The following technical result was used in the previous Lemma.

Lemma 13.9 Suppose ) is a C'-domain. If u € L>'(Q), § € CYH(Q) with 8 =0 on 99,
then Bu € L*Y(Q).

Proof. From Lemma 10.10, we know that C>(2) is dense in L**(Q) and for 3 € C1(Q),
we have that « — Bu is a bounded map on L?!(€2). Thus, it suffices to prove the Lemma
when u € C(Q).

Since v = Bu will be in C1(Q) and v is 0 on 99, it suffices to show that if v is a

function in C*(€2) and v = 0 on JQ, then v € Ly ().
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Using a partition of unity and a change of variables, we may reduce to the case when
v is supported in {z : |z| < 1, z, > 0}. We let n be a function which is 1 if z,, > 2 and
xn, < 1. We set v.(x) = n(x,/e)v(r) and consider

[0 =00 gy = [ IL= 0Pl + V) + €2 (/P Po(o)f dy

xn>0

The first term goes to zero with € by the dominated convergence theorem. Since v(z’,0) =
0, the mean value theorem implies |v(z’, )| < x,||Vv||L~. Since n'(z,/€) is supported
in the strip {z : € < x,, < 2¢}, the second term goes to zero with €, too. Thus, we may
approximate v by a sequence of compactly supported, C! functions. We may regularize
as in Lemma 10.9 to obtain functions in CP(§2) which converge to v. 1
Theorem 13.10 Let Q2 be a C'-domain, let v, and vo be conductivities in C*(Q) which
satisfy (11.7). If Ay, = A,,, then y1 = 72.

Proof. According to Theorems 11.8 and 11.9, we have v; = 7, and Vv, = V3 on 0.
Thus, by Proposition 13.1, we may extend 7; and 75 to functions in C*(R") which satisfy
(11.7), 71 = 72 in R\ Q, and 7, = v, = 1 outside a compact set.

Since the distributions ¢, = A,/7, /+/7e, are compactly supported we have that the
Fourier transform ¢, is given by the function g,(e=*"*). We fix & € R™ and show that
G1(k) = Ga(k). According to Lemma we may find sequences {C,? } CVand {@Di } so that,
¢+ ¢ = —ik, v] = e*% (1 + 1)) are solutions of Av — qv = 0 and lim;_, ||¢Z||X1(2 = 0.

J

¢
It follows from Theorem 12.12 and Lemma 13.2 that ‘

lim my, (v]) (03) = Ge(ik).
Jj—o0

Now (13.6) implies that if A, = A, then ¢; = ¢».
Finally, an observation of Alessandrini (I think) gives that if ¢; = go, then v = 5.
The details are the next Lemma. 1

Lemma 13.11 If v, and vy in CY(Q) and if A7, /7, = A7,/ +/7, as distributions,
then u = log(y1/7v2) satisfies the equation

div /1172Vu = 0.

As a consequence, if Q is C*, and v, = vo on the boundary, then v, = 7,.



142 CHAPTER 13. LESS REGULAR CONDUCTIVITIES

Proof. Let ¢ be a C'(Q) function, say, which is compactly supported in 2. Our hypoth-
esis gives
1
0= [ VAT V(=0) - V- VI
Q al VN Vi

If we make the substitution ¢ = |/71,/72¢, then we have

1

\/%cb) dx

/Q\/WV(log V71 —log\/2) - Vipdx = 0.

If 91 = 7 on the boundary and Q is C!, then by Lemma 13.9 we have log(y,/72) is
in L2'(Q). We can conclude that this function is zero in € from the uniqueness assertion
of Theorem 10.25. 1



Chapter 14

Bessel functions
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Chapter 15

Restriction to the sphere
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Chapter 16

The uniform Sobolev inequality

In this chapter, we give the proof of a theorem of Kenig, Ruiz and Sogge which can be
viewed as giving a generalization of the Sobolev inequality. One version of the Sobolev
inequality is that if 1 < p < n/2, then we have

[ull, < C(n, p)[[Aulp-

This can be proven using the result of exercise 8.2 and the Hardy-Littlewood-Sobolev
theorem, Theorem 8.10. In our generalization, we will consider more operators, but fewer
exponents p. The result is

Theorem 16.1 Let L = A +a -V + b where a € C" and b € C and let p satisfy
1/p—1/p =2/n. For each f with f € LP and D*f € LP we have

£l < CIL -
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Chapter 17

Inverse problems: potentials in /2
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Chapter 18

Scattering for a two-dimensional
system

In this chaper, we begin the study of the scattering theory for a first-order system in two
dimensions. The scattering theory for this system is related to the inverse-conductivity
problem in two dimensions. We will see that this system is also related to an evolution
equation in space called the Davey-Stewartson II system.

The system we study for the next several chapters can be written in the form

(D—Q)p=0 (18.1)
where D is the first order matrix of differential operators given by
0 0
D- < 09 ) |

Throughout this chapter, x = x; + 125 will denote a complex variable and we use the
standard notation for complex partial derivatives,

0 = 1 i 4 Zi o= 1 i — zi
N 2 8361 61'2 N 2 8I1 81'2
The potential @ in (18.1) is a 2 x 2 off-diagonal matrix,

12

where the entries ¢/ are functions on R?. We will sometimes impose one of the symmetry

conditions Q) = Q* or QQ = —Q*.
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Exercise 18.2 (a) Find
0z, Oz, 0% and Ox.

(b) If f is a function of a complex variable, write the Taylor expansion of f to order
2 using the complex derivatives O and 0.

For those who are not familiar with the term scattering theory, we will describe how
we understand this term. In the problems we consider, we will compare solutions of a
free system (where (Q = 0) with a system where @ is not zero. We shall see that we can
determine () from the asymptotic behavior of solutions. Scattering theory was developed
to attack problems in physics where one tries to determine information at very small
scales (for example, the structure of an atom) from measurements made at much larger
scales.

18.1 Jost solutions

If @ =0 in (18.1), then we may write down a family of solutions to this system which
depend on a complex parameter z

wlwd = e )

It is easy for even the most casual observer to see that Diy = 0 where D acts by
differentiating in the variables x and 7.

Our goal is to construct solutions of (18.1) which are asymptotic to ¢y at infinity.
The previous sentence will need to made precise before we can prove theorems. It is
reasonable to expect that we can recover () by studying the 1) and 1y. What may be
more surprising is that we can recover () just from the asymptotic behavior of the family
(-, z) as z ranges over C. This is one of the goals of the scattering theory we develop
in the next several chapters.

The exponential growth of the function ) is inconvenient. We will find an equation
satisfied by 19, * that eliminates the need to deal with functions of exponential growth.
We write ¢(x, z) = m(z, 2)io(z, 2) and observe that

B (5m11)¢11 (5m12¢22)
Dimin) = ( fmas) (omemrest )
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Thus, we have that

I p 0 (5(m1267iiz))€ia’:z
D(m¢0)wo = Dm + ( (8(m216izz>)67i:pz 0
B p 0 (5(m1267ix27ii‘z))eix2+i5cz
= Dm"+ ( (O(m?2Lein=+iaz))pive—iz: 0

— D+ (D(m°A(, ) Az, -3)
The second equality follows since de™* = 0. The matrix-valued function A is defined by

i(zzZ+7Zz)
A = a0 = (77 L)

e
Using the matrix A we may define the operator E, by
E.f = f'+ [PA: = [T+ A_Lf°.

Here, we let A? denote the diagonal part of a square matrix A and A° = A — A¢ denotes
the off-diagonal part of A. Finally, we define an operator D, by D, = E;'DE,. With
this notation, we see that v = miy will solve (18.1) if and only if m satisfies

D.m —Qm = 0. (18.3)

18.2 Estimates

To proceed, we will need to fix a norm on matrices and define spaces of matrix valued
functions. If A and B are n X n matrices with complex entries, then we define an inner
product by (A, B) = tr(AB*). Then, the norm is given by

AP =) AP (18.4)
j=1 k=1
where A = (A7%). The norm | - | is often called the Frobenius norm.

Exercise 18.5 a) If A is a matriz Let || A||z denote the norm of A as an operator on C",
|Allz = sup{|Az| : |z| < 1}. Show that these norms satisfy the inequality |Al; < |A|.
b) Prove that our matriz norm is mulitiplicative for the matriz product

AB| < |A||B|.

Hint: If C; denotes the jth column of a matriz C, then use the operator norm to estimate
(AB);. Use part (a) to estimate the operator norm of A in terms of the Frobenius norm.
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With this norm, we may define spaces of matrix-valued functions L2 (R?) = {f : (y)*f(y) €
L*(R?)}. The norm on this space is

1/p
ey = [ PG an)

When p = oo, we define || f||1oor2) = esssup(y)®|f(y)|. Here, we are using (z) = (1 +
|z|?)'/2. Throughout this section, we will let p denote an exponent in the open interval
(1,2) and then p is defined by the relation 1/p = 1/p—1/2. We begin with the following
simple extension of Holder’s inequality.

Proposition 18.6 Suppose that p, q and r lie in [1,00] and 1/p =1/q+1/r, that o and
B licinR. If f € LL(R?) and g € L;(R?), then fg € L., 4(R?) and

If9llre, ey < I fllzame)lglloy@e)-
Proof. The proof is a simple application of Holder’s inequality. ]

We now consider the equation
Du=f.

One solution of this equation is given by the operator G defined by

G(f)(x)z%/f{g(xay xﬂy)lf@my:(g(fgw g(f(;(x))

where ¢g and g are the Cauchy transform and the corresponding operator for 0. (See
exercise 8.3) We summarize some well-known properties of this operator G.

Proposition 18.7 Fiz p with 1 <p < 2. If f € LP(R?), then we have

G erwe) + IVG()llrge) < CllF e me)-

The constant C' depends only on p and p is defined by 1/p=1/p —1/2.
The function w = G(f) is the unique solution of Du = f which lies in the space
LP(R?).

Next we define an operator G, by G, = E;'GE,. The next Corollary follow easily
from Proposition 18.7.
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Corollary 18.8 If 1 < p < 2 and f is in LP(R?), then u = G,(f) satisfies D,u = f.
We have
1G.(lsrey < Cllfllzrr2)

and for each f in LP, the map z — G.(f) from C into LP is continuous or to put it
another way, the map z — G, continuous from C into L(LP, L?) with the strong operator

topology.

Proof. 1t is easy to see that G,(f) solves D,u = f. As the map F, is an invertible norm
preserving map on LP, the norm estimate for G, follows from the corresponding result
for G in Proposition 18.7. To establish the strong convergence of the family of operators

(., we observe that
G.(f)(@)] < L([f) ()

where [; is the Riesz potential defined in (8.4). For z and y fixed, we have the
(y

lim A(x —y,w) f(y) = A(x — y, 2) f(y).

w—z
If I,(|f])(z) is finite, then |f(y)|/|z — y| is in L*(R?) and the dominated convergence
theorem implies

lim G, () = G.(f).
Another application of the dominated convergence theorem implies that
Einz 1Gw(f) — GZ(f)“LP(R2) = 0.
|

We will find solutions to the equation (18.3) in the form (I — G,Q) (1) where I, is
the 2 x 2 identity matrix. To proceed, we will need to show that the inverse (I — G.Q)™!
exists and is differentiable. We begin by establishing the invertibility.

Proposition 18.9 Let k > 0 and assume that Q € Li(R?). If 2 < p < oo, we have that
G.Q: L, — I,
and we have the estimate
HGzQ(f)”LEk(R?) < CHQHL%(R%||f||L§k(R2)'
The constant C' depends only on p.

Proof. From Proposition 18.6, we have
1@ ey < 1QN2me) 1117 (m2):

From Proposition 18.8, we have ||G.(Qf) || 1sw2) < C||Qf | 1r(r2)- Finally, we have L?, C
L? since (y) > 1 and the estimate of the Proposition follows. 1
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Remark. When p =4/3, it is known that C'(p) < 1. See Lieb and ...

_ The following Lemma shows that the map z — G.Q is continuous into operators on
L”, in the operator norm. Note that this is a stronger result than we proved in Corollary
18.9. In a future version of these notes, Corollary 18.9 will be disappeared.

Lemma 18.10 Let 1 < p < 2 and suppose that k > 0. If Q) € L’zk, then the map
z — G.Q is continuous as a map from the complex plane into £(L§k). If we assume
that (I —G,,Q) is invertible, then the inverse exists in a neighborhood of zy and the map
z— (I —G.Q)7 " is continuous at z.

Proof. We begin by showing that the map z — G.Q is continuous. To see this, fix
e > 0. We first observe that we may find )y which compactly supported and so that
Qo — Q|| 12 < € Then, Hélder’s inequality, Theorem 18.6, and the Hardy-Littlewood-
Sobolev inequality, Theorem 8.10, imply that

1G(Q = Qu)f s < CIQ—Qullzlf 5.

as long as k > 0.
Since supp @y is compact, we may find R > 0 so that supp Qo C Br(0). We can find
a constant C' so that

CllQollz 1A1 7,

]

: |z| > R.

Recalling that p > 2 and k£ > 0, it follows from the above that we may choose R; so that
||G2Q0f||L§k({x:|x|>R1}) < €||fHL§k‘

Finally, we observe that our matrix valued function A(x, z) satisfies |A(x, z) — A(z, w)| <
Clz||z — w|. This and the compact support of @)y allow us to conclude that we have a
constant C' so that

IG.Qof = GuQofllp, < (B = ELNGE.Qofll s (uuiery + 1 Eu' G(E: = Bu)Qof |17,
< C(RA+ Ry)lz —wll[fll 7 -
From the above observations, we see that we have
1G-Qf = GuQfllr, < 11G(Q = Qo)fllr +11Guw(Q = Qo)fll7
+(G. - Gw)<Q0>f||lek({:c:|z\<R})

"‘H(Gz)(QO)f||L§k({x;|x|23}) + ||(Gw)(QO)f||Lljk({x;\x|zR})
< Cellfllp, +C(R+Ry)|z—wll|flls



18.2. ESTIMATES 157

If we require |z —w| to be small so that C'(R+ R )|z —w| < €, we obtain that the operator
norm of G,Q) — G,,@ is at most a multiple of e. We have established the norm continuity
of G,Q.
To establish the continuity of the inverse, we write
(I_GZQ)il = (I_GZOQ_'_GZOQ_GZQ)il = ([_GZOQ)il Z(([_GZOQ)(GZOQ_GZQ))]"
=0

The norm continuity of the map z — G.() now implies that the inverse map is also
continuous. I

Corollary 18.11 Let 1 < p < 2 and suppose that k > 0. Let C = C(p) be the constant
in Proposition 18.9. If we have C(|Q|[12(r2) < 1, then the operator (I —G.Q) is invertible

on L’zk and the norm of the inverse operator satisfies

1
I-G.Q) " <
IfS Q) ‘|L(L{k) -1 CHQHLi
In addition, the map z — (I — G.Q)™" is continuous as a map into the operators on L’zk
with the norm topology.
Proof. We write

oo
(I-G.Q)" =) (G-Q)"
k=0
We may use Proposition 18.9 to estimate each term in this series and sum to obtain the
estimate of the Proposition.
To obtain the continuity of the inverse map, we write

(([ - GwQ)il - ([ - GZQ)il)f = (([ - GwQ)il(GzQ - Gw@)([ - GZQ>71)f'

Since the norm of (I — G,,Q)"! is bounded in w, it is clear that the strong continuity
of the map z — G,@Q implies the continuity of the inverse map (see the proof of Lemma

A5). 1

Corollary 18.12 Suppose that 1 < p < 2 and that k > 2/p and Q € L with CHQHLﬁ-
We may find m a solution of (18.5) with [[m(-,z|| s, < C and m is the only solution in
LP . Furthermore, m(-,z) — I lies in LP and there is only one solution of (18.3) with
m(-,z) — Iy in LP.

Proof. Our condition on p and k guarantees that I, is in L”,. Set m(-,z) = (I —

GZQ)_1<[2)' 1
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18.3 Notes

The material we discuss in this chapter is presented formally in Fokas [11], Fokas and
Ablowitz [12], some proofs are sketched in Beals and Coifman [4], and the results are
worked out in complete detail in Sung [32, 33, 34].



Chapter 19

Global existence of Jost solutions

Our next goal is to show that if @) satisfies ) = Q*, then we have the existence of the
Jost solutions m without any size restriction on ) and we have the estimate

sup [[m(-, 2)[| 7 < C(Q).

zeC

We will assume some smoothness on () to do this. Our goal is to develop a complete
theory when the potential is in the Schwartz class.

19.1 Uniqueness

In this section, we establish uniqueness of solutions to the equation (18.3), (D,—Q)m = 0.
We begin by studying a scalar equation which contains all of the analytic difficulties.
Under the assumption that ) = Q*, we are able to reduce the system to several scalar
equations.

Lemma 19.1 Suppose that f lies in LP(R?) N LP (R?) for some p with 1 < p < 2, then
the Cauchy transform of f, g(f) is continuous and satisfies

lg(F)llee < CULLNpll F1l) 2.

Proof. We let R > 0 and write

o =2 ([ Ty /| P 4y) = Lt + 1160

T z—yl<R T —Y z—y|>R L — Y ™

159
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From Holder’s inequality, we have

1/p o \ /P 2
@< ([ wia) =i (F5) R
Br(0) p

Another application of Holder’s inequality gives that

00 1/p' 1/p
o 2T _2
II(z) < || fll, <2W/ ri? dT) = [Ifll» (—) R'"%.
R

=2

Thus, g(f)(x) satisfies

1 or \ /7 -2 2r \ /7 2
g(f)(af)IS;(Hpr(p,_Q) Rty ()R )

The minimum on the right-hand side of this expression will occur if R=**%/? a multiple
of (|| fll,/Ilf]l,)*/?. Thus, we may find a constant C(p) so that

lg(Hllee < CIFI AL (19.2)

To see that g(f) is continuous, we fix f in L” N L and approximate f by a sequence
of smooth functions which converge in L” and is bounded in L”'. (Unless p = 1, it is easy
to arrange convergence in LP and L”".) The estimate (19.2) implies that g(f;) converges
uniformly to ¢(f) and hence g(f) is continuous. 1

Exercise 19.3 Show that we have

lg(F)llce < Cles D)l flp

ifa=1—-2/p, 2 <p<oo. Here, we are using || - ||c= to denote the C* semi-norm

[flloe = supfa #y : [f(2) = F)I/(lz = y|")}-

In the next theorem, we use the space Co(R?). This the closure in the uniform norm
of the continuous functions with compact support.

Theorem 19.4 (Vekua [39]) Suppose that ¢ and g lie in LP N LY for some p with
1<p<?2. If fisin L" for some r withp <r < oo or f is in Co(R?) and satisfies the
pseudo-analytic equation

Of —aif —of =0,
then f = 0.



19.1. UNIQUENESS 161

Proof. We set
(2) = ¢ (), if f(z)=0
I a(@) + f8aw(@), i f(z) £0.
With this definition, we have that f — ¢f = 0 and we have g € LP N L¥ for 1 < p < 2.
Our hypothesis on ¢ and Lemma 19.1 imply that v = C(q) is bounded. The pseudo-
analytic equation implies that ¢ = fe™ is analytic. Since u is bounded, we have that

g lies in ¥ (or Cy) whenever f does. Thus, Liouville’s theorem implies that g must be
identically 0. 1

Exercise 19.5 (Nachman) Extend Theorem 19.4 to the case when q; € L? for j =1,2.

We now show how to use the above the result of Vekua to establish uniqueness to our
first-order system, (18.3).

Theorem 19.6 Suppose that Q = Q* and Q lies in LP N LY, for some p with 1 < p < 2.
If Dom — Qm =0 and m lies in L™ for some r with co > r > p, then m = 0.

Proof. Fix z. We define four functions, u* and v* by

) = m'(z,2)*exp(—izz —izz)m* (z, 2)

vE(r) = exp(izz +iz2)m?(z, z) £ m*(x, 2).

Each of these functions will be a solution of the equation df — qf = 0. To see this for

u*, we start with the equations
omti(z,2) = q(x)m(z,2)
o(m* (z, 2) exp(—izz —iz2) = g (x)m"(z,2)exp(—izz —iTZ).

Adding these expressions and using that Q* = @), we obtain that

om*(x, z) £ m* (x, 2) exp(—izrz — iTZ)

= ¢ (x)m*(z,2) + ¢"*(2)m* (2, 2) exp(izz +iT2) £ m

= +q¢"? exp(—izz —iTZ)u".

11

A similar calculation gives that
owE(x) = ¢*(z) explizz +i22)v~ (z).

These equations, and our hypotheses on () and m allows us to use Theorem 19.4 to show Check this.
that u* = v* = 0. It follows from these four equations that the four components of m
are zero. 1
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Next, we observe that the map f — G.Q)g is a compact operator.

Theorem 19.7 Let 1 < p < 2 and suppose that () € L%. Then the operator f — G,Qf
18 a compact operator on L’ik.

Proof. We first consider the case where () is bounded and compactly supported. If @)
is supported in a ball B, then we have that GE;'Qf will have analytic or anti-analytic
components outside of the support of (). By examining the Laurent expansions of these
functions, we may see that f — G,Qf is a compact map into L”,(C\ B). On the set
B, we may use that GE;'Qf is in the Sobolev space L%!(B) for ¢ < oo and the Rellich
compactness theorem to conclude that G,Q is a compact map into L? w(B). Thus we
have proven our theorem in the special case that () is bounded and compactly supported.

If Q is an arbitrary element in L?, then we may approximate @ in the space L7 by
a sequence ||Q;} where each Q; is compactly supported and bounded. We have that the
sequence of operators G,(); converges in operator norm to the operator G.Q. As the
set of compact operators is closed in the operator topology, we may conclude that the
operator GG,() is compact.

19.2 Existence of solutions.

In this section, we establish the existence of solutions to an integral equation. This result
is the main step in establishing existence of solutions to the equation (18.3).

Theorem 19.8 Fiz p with 1 < p < 2. Suppose that ) € L™ N L', Q=0Q" and Q € L}
then for each h in L”,, the integral equation

(I =G.Q)(f)=h (19.9)

has a unique solution in L’ik. If we set f(z,z) = (I —G.Q)"'(h) is continuous as a map
from C into L” .

Proof. 'We begin by showing that solutions of (19.9) are unique. Suppose that (I —
G.Q)(f) =0 and f is in L”,. Since we assume that Q € L2, if follows from Holder’s
inequality that Qf is in LP we conclude that f = G.(Qf) is in L? by Theorem 8.10.
From this, we conclude that D, f — Qf = 0. It follows from Theorem 19.4 that f = 0.
To show existence, we begin by observing that Proposition 18.6 and Theorem 8.10
imply that (I — G.Q) is a bounded operator on L”,. Also, from Theorem 19.7, we
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have that the operator f — G.Qf is compact. Since we have shown that the operator
f — (I — G,Q)f is injective, it follows from the Fredholm theorem that I — G.Q is
invertible.

The continuity follows from Lemma 18.10. 1

Corollary 19.10 Suppose that 1 < p < 2 and kp > 2 and let Q € L. If Q is small in
LiorQ=Q" and Q € L" N L for some r with 1 < r < 2, then we may find a unique
solution of (18.3) with m(-,z) — Iy € LP.

19.3 Behavior for large 2
Our next theorem shows that m is bounded for large z and in fact we have

Jim |72 =m(, 2)ll e, = 0.

We begin by establishing an integral equation for the diagonal part of m, m?.

Lemma 19.11 Suppose that Q € L} with k > 0 and h is in L’zk with h® = 0. A matriz-
valued function m in L”, satisfies the integral equation (I — G,Q)m = h if and only if
the diagonal and off-diagonal parts satisfy

me(-,2) — GRG.Qm(-,z) = h (19.12)
G.Qm(-,2) (19.13)

m0('> Z)

Proof. 1f we have m — G,QQm = h, we may separate this equation into the diagonal and
off-diagonal parts of the matrix and obtain the equations

mt—GQm°® = h (19.14)
m’ —G.Qm* = 0 (19.15)

If we substitute the second equation into the first, we obtain (19.12) and of course the
second equation is (19.13).

Now suppose that we have the equation (19.12). If we define m° = G.Qm?, we
immediately obtain the integral equation (19.9). 1
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Theorem 19.16 Fizp with 1 <p <2 andk > 0. Let Q € L3, fir p. If VQ € L? and
Q) € L, then we have the estimate

16QE-Qflls < CQIl 1 flls,

Proof. We give a detailed proof for one component of GQG,Q f. The other components
may be handled similarly. We begin by writing 7' as the operator which takes f!! to

(GQG.QNM,
Tfll(]}l) = (GQGfo)11($1)

1 [ P (w9)a® (g — 23, —2)¢* (23)
7T2 C (.171 — $2)<i’2 — jfg)

fll (33'3) dl’z dx'g.

We write a®(xy — 3, 2) = £0,,a*(x2 — 23, 2), substitute this into the previous displayed
equation and integrate by parts to obtain

Tl (e) = — / L2 () (w2) 1 ) diry

1272 Ja2 11 — 9

12 2 21
| 1 2/ 0q'*(x9)a*(xs 7x3,z7)q (x3) £ (g) diny iy
LT J o2 (21 — 22) (%2 — 73)

1 / ( 1 12<x2)/a2(l‘2—$37Z)q21(133)f11(1?3)

— DbV - -
12T c T2 — T3

dl’gdl’z

1
= (I+11+1I1).

1zm2

We estimate these three terms.
By Theorem 8.10 and Holder’s inequality, we have

1[5 < lQllscl@lzz I 1l 7 -
For the second term, I, we use Holder and Theorem 8.10 again to obtain

11 < CIDQ 2 1@z

For 111, we use the Calderén-Zygmund theorem, Theorem 6.10, to obtain that
H1T|r < ClQlooll QN 2 I £l 7, -

These estimates complete the proof of the theorem. 1
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Finally, we can give the main result of this chapter.
Theorem 19.17 Let pk > 2. If Q is in S(R?), then m(-,z) = (I — G.Q)'(I,) satisfies
Im(- )l <C.

In addition, m is a solution of (18.3) and for each z, m(-, z) is the only solution of this
equation with the condition that m(-,z) — I is in LP.

Proof. 'We solve the iterated integral equation (19.12). For z large, Theorem 19.16 tells
us that we can solve the integral equation (19.12) with a Neumann series. Thus, we may
find R so that [|m(-, z)||L;sk < C'if |z| > R. For z less then R, Proposition 18.10 tells us
that z — [|m(-, 2)|| 17, is continuous function and hence this function is bounded on the
compact set {z : |z| < R}.

If m and m’ are two solutions of (18.3) with m — I, in L?, then m — m/ is a solution
of (D, — Q)(m —m') =0 with m —m’ € LP. Theorem 19.4 implies that m = m/. 1

Remark. One puzzling feature of the above Theorem is that we know that ||m(:, z)||»
—k

is bounded, but we do not have a quantitative estimate for this bound in terms of ().
Can you provide such an estimate?
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Chapter 20

Differentiability of the Jost solutions

In this section, we discuss the smoothness of the Jost solutions m to (18.3). We shall see
that decay of @) leads to smoothness of m in the z variable and smoothness in @) leads
to smoothness of m in the x variable.

When we establish the differentiability of m with respect to z, we will also estab-
lish remarkable property of the solutions m. These solutions satisfy an equation in the
variable z which is of the same general form as the equation (18.3). This equation will
be called the d/0z-equation In this equation, the function which takes the place of the
potential @) will be called the scattering data S. This scattering data will also appear in
an asymptotic expansion of the solution m. If we recall the solutions vy introduced at
the beginning of Chapter 18, we see that these functions are holomorphic with respect
to the parameter z. When the potential () is not zero, then the scattering data tells us
how far the solutions m are from being holomorphic.

From these results, we will see that if ) is in the Schwartz function, then the cor-
responding scattering data is also in S(R?). This will be used when we study how to
recover the potential ) from the scattering map.

Throughout this chapter we continue to let p be an exponent in the range 1 < p < 2.

20.1 Differentiability of the Jost solution with re-
spect to z.
We begin with the equation (18.3) for m. As in Lemma 19.11, we may iterate this

equation. It turns out that the off-diagonal part of m is oscillatory. The proper function
to study is n(z,z2) = E,m(x,z). It is is easy to see that the function n will satisfy the

167
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following iterated integral equation.
n—GQ,GQ.,n = I, (20.1)

In this equation, we introduce the notation ), to stand for the operator given by Q.h =
E.QE;'h. We begin with a Lemma on the regularity of solutions of the equation (20.1).

Lemma 20.2 Fiz p with 1 < p <2 and let Q be in L for some k >0 and n be in L’zk
and satisfy the integral equation

n—GQ.GQ.n = f.
If Vf lies in LP, then Vn lies in LP and we have the estimate
IVnll < QI s+ 1V flzo-
Proof. We have the representation for n
n=GQ.GQ.,n+ f.

Our assumptions imply that @),n lies in LP with respect to the z-variable. Then Hardy-
Littlewood-Sobolev and Holder’s inequality imply Q.GQ.n lies in LP. Applying the
Hardy-Littlewood-Sobolev and the Calderén-Zygmund theorem gives that n lies in L?
and that Vn lies in LP with respect to the x-variable. 1

Theorem 20.3 Let m € LP, be a solution of (I — G.Q)m = h and set n = E.m.
Suppose that 9°Q/dz® lies in L3 for all o with |a] < ¢ and that h is a diagonal-matriz
valued function with 0*h/0x® in LP for all multi-indices a with 1 < |a| < £. Then
Vornd |0z lies in LP for all a with |a| < £.

Proof. We establish the result for one component and leave the details for the other
component to the reader. We write

1 12 YN 21 11
n'(x,z) = —2/ g (z1)a (w2 — o, Z)q <iv2)n (z3,2) dxy dry + b (z).
2 Jga (x — x1)(Z1 — T2)

We make the change of variables x1 = x — w; and wy = x1 — 5 to obtain

dw1 dUJQ

(7, 2) — 1 / "% (z — wy)a?*(wy, —2)¢* (x — wy — we)n' (x — wy — wo, 2)
R4

7T2 W1 Ws

M (z). (20.4)
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We will use induction to show that n has ¢ derivatives.

According to Lemma 20.2, n has one derivative. Let o be a multi-index of length j
with 1 < j < ¢ and assume the induction hypothesis that n? has j derivatives. If we
differentiate with (20.4) with respect to z, we obtain

0" 1
pyil (z,2)
1 % (z — wy)a*(wy, —2)¢* (x — wy — wg)%nn(:c — Wy — W, 2)
__2 — z dw1 dUJQ
™ JR4 wiws
aa
" Oge Y@
1 a! a®(wq, —z) 0°
e 2 Blylo! /4 (wa )axﬁqlz(m — )
Bty+o=adta IR 172
< )0 ) duw, d (20.5)
—q 7 (r —wy —we)=—n " (x —wy — ws, z) dwy dws. )
o 1 2) 55 1 2 1 QWs
Changing variables again, we may rewrite the right-hand side as terms of the form

3. 12 72! 9l
Y Y PTG M

where ¢ is our new notation for the Cauchy transform. Given our induction hypothesis
and the hypotheses on n, we have the right-hand side of (20.5) has one derivative in L”.
Hence, we conclude from Lemma 20.2 that Vo®n! /92 lies in LP, also. i

20.2 Differentiability with respect to z

We discuss the differentiability of the operator GG.() with respect to z. These results will
be used to differentiate the solution m(z, z) of (18.3) with respect to z.

Proposition 20.6 If f € L} ,(R?), then for j =1,--- ,{ the functions

9t—i i
%%Gz(f) (:r)

are continuous for (z,z) € R* and

ot
sup | (0)' ™ 5 5

G.(N(@)| <CON Sl re):
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Proof. As G.(f)¢ is independent of z, we only need to consider (G.f)°. To simplify
the notation, we only consider one component. The other component may be handled
similarly. Differentiating under the integral sign gives

AR G 12 1 . =105 — 5))V el Gla—+2E-9) £12(, 4
s Gef @) = £ [ = )i — ) 12(y) dy

It is easy to see that the right-hand side is bounded by a multiple of

@ [ 17wl

Exercise 20.7 Use the Hausdorff-Young inequality to show that if f is in LP(R?), for

some p with 1 < p <2, and
0
m(e,2) = 5= Ga(/)()

then we have a constant C so that
[ suplm(a, ) dz < €.
X

Exercise 20.8 Suppose that f € L'(R?). Show that

im L GL(f)() = 0

— z
|z]—o0 0z
and the convergence is uniform in x.

Corollary 20.9 Let p and q lie in (1,00). Suppose that k > 2/p' and j > 2/q. Then
the map
z— G,

is a strongly differentiable map from the plane into L(Ly(R?), L? ;(R?)).

Proof. Our condition on p and k implies that L?(R?) C L*(R?). Thus we may use
Proposition 20.6, to see that the map z — G, f(x) is differentiable in the point-wise
sense and the derivative is bounded. Since we have L*(R?) C L, the dominated
convergence theorem implies that

1 0 -0
_HGZ+hf - sz - haGZ(f) - h%

lim

ho0 |h| GZ(f)HLq_j(RQ) = 0.
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Corollary 20.10 Let k > 0, and 1 < p < 2. Suppose that Q lies in L2 so or that
Q=Q,QelLnN L for some v with 1 < r < 2 and Q lies in L% so that I — G.Q
is invertible on L¥ . If h € L (R?) and Q lies in Lj(R?) with C(p)||Q| L2 small or

Q = Q* so that I — G,Q is invertible on Lzzk. Define m by
m(z,2) = (I = G.Q)'(h).

The function z — m(-, z) is differentiable as a map from the complex plane into Lzzk.
If kp > 2 and h = Iy, then we have that

%m(m, 2) = m(x, 2)E;1S(2).
Proof. From the Holder inequality, we obtain that @ f is in L’f and our hypotheses imply
that Lﬁa C L. From Corollary 20.9, it follows that I — G.Q is strongly differentiable as
an operator on L (R?). From Lemma A.5 of Appendix A, it follows that m(-, z) =
(I — G.Q)~'(h) is differentiable as a map from R? into L” .

If we let h = I, then DI, = 0 and it is clear that m(-,2) = (I — G.Q) ' (I3) will
satisfy the system (18.3). From Lemma A.5 the derivative with respect to z will be

0 0

gm(-, 2) = (I — GZQ)”(%GZQ)(I —G.Q) (). (20.11)
Since m(-,z) = (I — G,Q)~*(I3), we have that
SG-QU = 6.0 1) = =27 [ Ala — y.2)Q)mly. 2 dy = B (2)

The quantity S(z) is defined by

2
S(z) = ——J/ E.(Qm(-, 2)")°dy (20.12)
T R2
and J = % _OZ (z) ) We will see that S plays an important role in our theory and call

S the scattering data associated to the potential (). Note that from the weighted Holder
inequality, we have Qm is in L} C L. Hence, it follows that S is a bounded function.
Thus we may rewrite (20.11) more compactly as

0

gm

(2) = (I = G.Q) ' (E'S(2)). (20.13)
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We now simplify the right-hand side. We observe that if S is an off-diagonal matrix
that is independent of x, a calculation shows that D,(fE;1S(z)) = (Dsf)E;'S(z). This
implies that G.(fE;1S(2)) = G:(f)E;'S(z) whenever f in LP(R?) for some p between
1 and 2. As we have that m satisfies the equation m(-, z) — G:(Qm(-, 2)) = I, we may
right-multiply this equation by E;!S(z) and obtain that the quantity m(-, z2)E;1S(z)
satisfies the equation

m(, 2)E;1S(2) — G.(Qm(, 2)E;1S(2)) = EZ'S(2).
Applying (I — G.Q)~" to both sides yields
m(-, 2)E;1S(2) = (I = G.Q) "' (E;'S(2)).
Hence we may rewrite (20.13)

%m(., 2) = m(-, 2)E-1S(2). (20.14)

This completes the proof of the Corollary.
|

Exercise 20.15 Show that, under the hypotheses of the above theorem S(z) is continuous
and lim|;| . S(z) = 0.

20.3 Higher derivatives with respect to z

Next, we sketch the proof that our Jost solutions have additional derivatives with respect

to z. Towards this end, we consider the iterated integral equation for m¢,

m(z,2) — GQG.Qm(z, 2) = I,.

We will prove by induction that this function is differentiable of all orders. We assume
that m? has ¢ derivatives with respect to z and these derivatives exist in the space Lf k-
Let a be a multi-index of length ¢. Differentiating the iterated integral equation with
respect to z gives

9 4 1 q?(21)a?(z2 — 21, 2)¢* (22) O 4y
= d
gz (z,2) 72 /R4 (x — 21)(Z1 — T2) R (23, 2) dy devs
B al 1 q"% (1) (i(21 — @2))"a® (22 — 21, 2)¢* (22) O
- Z Byl w2 /114 (x — x1) (&1 — T2) 9 (w2, 2) d dvy

B+r=aa

= Fl(x,z). (20.16)
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We have defined the right-hand side of the previous equation to be F'(z, z) which satisfies

0 ol ,
I3 F G A)e, < CIQa Qg 3 Ie=m 6 lle, =12

[v|<¢

Corollary 20.9 implies that the operator on GQG.(Q is differentiable with respect to z as
an operator in the strong topology for operators on L? - Hence, we may use Lemma A.5
from Appendix A to conclude that the solution of this integral equation has one more
derivative with respect to z. This will require that @ lie in L7, if m lies in L’

We have more or less proven.

Theorem 20.17 Suppose that k > 0 and 1 < p < 2 with kp > 2. Suppose that Q lies in
the Schwartz class and that either Q@ = Q* or that Q is small in L} so that [ — G,QG,Q
is invertible. Suppose that m = (I — G.Q)™'(I2) is the solution of (18.3) which lies in
L, .

Under these hypotheses, all derivatives of the diagonal part of m, m?, will lie in
L=(17,).

Finally, combining the arguments used to prove Theorem 20.3 and Theorem 20.17 we
can prove the following.

Theorem 20.18 If Q) lies in the Schwartz class and either Q) = Q* or HQ”Li is small

for some k > 0, then the solution m? is infinitely differentiable and for p and k so that

k> 2/p we have
ooth

Oxb 2o

m? € L®(dz; L7,).

Exercise 20.19 Note that we only are asserting a result for the diagonal part of m,
where the map E, has no effect. Formulate and prove a similar result for the off-diagonal
part of m.

Proof. We begin by following the arguments in Theorem 20.17 to obtain that

aa d aa d .
@m (72) GQGZQ@m (,2) - F( 7Z)

where F'is as in (20.16). Examining (20.16), we see that
sup, [|VoF (- 2)|lr < C(Q) X2, 1< | Z-m?| pee(1s). Now, from Lemma 20.2, it follows

that %md is differentiable once with respect to z and the derivative lies in L*°(LP).
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Finally, an induction argument as in Theorem 20.3 gives higher derivatives with respect
to x.

Note that the method from Theorem 20.3 gives that each derivative lies in LP, but if
the (th derivatives lie in L*>°(L?), then Sobolev embedding gives that the derivatives of
order ¢ — 1 lie in L>°(LP). 1

We give the following result on the map which takes a potential @) to the scattering
data S. Given a potential @, we define the scattering map T by T(Q) = S.

Theorem 20.20 Let Q) be an off-diagonal matriz-valued Schwartz function and suppose
that either ”QHLﬁ is small for some k > 0 or that Q = Q*. Then T(Q) lies in S(R?).

Proof.  We recall the definition of the scattering data (20.12)

S() =27 [ E(QmY(y, =) dy.

m R2

Let k be a non-negative integer and suppose that § is a multi-index. We may write

zk% (2) as

! 87 °
e ] > L5 =)D Q) g . 2)) dy.

When (@ is in the Schwartz class, the estimates for derivatives of m in Theorem 20.18
allow us to show that this integral is bounded. 1

Exercise 20.21 (Long!) Show that the map T is continuous on the Schwartz class.



Chapter 21

Asymptotic expansion of the Jost
solutions

In this section, we establish an asymptotic expansion for the Jost solutions, m. We
continue to assume that the potential () is a matrix-valued Schwartz function. We will
base our expansion on the construction of m as a solution of (18.3). We observe that
similar arguments, with the roles of  and z reversed, will give asymptotic expansions of
the function m which solves the d-equation, (20.14), below.

21.1 Expansion with respect to x
We begin by giving an expansion in the variable z. We recall our convention that n =
E.m. The first expansion is more natural in this variable.

We introduce mixed LP spaces on R*. The space LP(L%) will denote the collection of
measurable functions on R* for which the norm,

a/p 1/a
L2(L8) = (/RQ </RQ |m($72)|pdx) dz)

is finite. We make the usual extension to the case p = co.

[

Exercise 21.1 Show that for 1 < p,q < oo, these spaces are Banach spaces.
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Theorem 21.2 Suppose that Q) is in the Schwartz class. Fix p with 1 <p < 2 and k so
that k > 2/p. Suppose that Q is small in L} or that Q = Q*. We have

(5 8) peog (5 2) o

J=0

€ L(LP).

Here, ng = Iy and for 37 > 1, we define

_ 1 v 0N g d
TLJ({L‘,Z)—% R 0 7z ( ZQm)(x,z) Y.
Proof. We proceed by induction. The base case follows from our theorem on existence
which gives that n — I, = GE,Qm. Now we consider

(g g)(n(g;,z)—lz):%/<zi_% 50>E2Qm(y,2)dy

-y
On the right-hand side of this expression, we may add and subtract y or ¢ in the numer-
ator to obtain

( g g ) (n(z,2) = L) = ny(, 2) + l/C ( %y) gO ) E.Qm(y, 2) dy.

-y
Rearranging this last expression gives the next term of the asymptotic expansion.

It is now clear how to proceed by induction. We suppose that we have the expansion
up to order ¢ with the exact error term

”82 e(n(x,z)—i A _‘nj(z))Z; & gt | B@mly, 2)dy.
() (3 8) =21 (%3 )

- (21.3)

We multiply both sides by the matrix ( * g ) and then add and subtract y or 4 in the

0

numerator of each term in the matrix to conclude

l+1

( . )”1 n(r -3 ( - )j ny(2)) = n€+l(z)+%/c ( 1_16 L ) E.Qml(y, =) dy.

¢
J=0

1<

=y

Rearranging gives the expansion (21.3) with ¢ replaced by ¢ + 1. The estimate (19.17)
for m in LP ., our hypothesis that @ is in the Schwartz class implies that y*"1Q(y) is in
L? and thus Corollary 18.8 implies that the right-hand side of the previous equation is
in LS°(LP). 1
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Remark. Note that, up to a constant multiple, the term n;(z) is our scattering data
that appears below in (20.12).

21.2 Expansion in z

In this section, we give a second expansion for the Jost solution m. The terms in this
expansion will reappear when we study the Davey-Stewartson equation by an inverse
scattering method.

We begin with a Lemma which is a slight extension of our results on invertibility of

(I — GzQ).

Lemma 21.4 Let k > 0 and 1 < p < 2 and suppose that Q) lies in the Schwartz class.
If either Q is small in L or Q = Q*, then the map I — G,QG.Q is invertible on L”,.

Proof. 1In the case that () is small, we may find the inverse with a Neumann series as in
Corollary 18.11.

In the case where we assume () = QQ*, we may use Lemma 19.11 to see the uniqueness.
With Theorem 19.7, the invertibility on L” ., follows from the Fredholm theory. To see

that the map inverse is bounded on L“(L}i .), we may use the smoothness of () to obtain

the operator norm on L ;. 1s bounded for large z as in Theorem 19.16 and the continuity
of the operator (I — G,QG,Q)™! (see Lemma 18.10) to conclude the boundedness for all
z. 1

We give the expansion in z.

Theorem 21.5 Supppose that ) is an off-diagonal matriz valued Schwartz function and
that either Q = Q* or that Q is small in L} for appropriate k. For { = 0,1,2,..., we
have the following expansion for the Jost solution m,

2 (m(z,2) — Z 2 my(x)) € L(LP).

The coefficients m; are given by mg = Ia, m§ = 2JQ, m$,, = 2J(=D + QGQ)m? and
m;-l:GQ(m?) forj=1,2,....

Proof. We begin our proof by observing that if we write

Ay, 2) = ( ol > DA(y, 2) = —2JDA(y, 2), (21.6)
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then we may integrate by parts in the expression G,(f°) to obtain
2GL(f°) =2Jf° — G,(2JDf°). (21.7)

Now we begin with the iterated integral equation for the off-diagonal part of the Jost
solution, m. We have

(I — G,QGQ)(m°) = G.Q.
We multiply by z and use (21.7) on the right to obtain
(I - G.QGQ)(zm") = 2JQ — G.(2JDQ).

The first term on the left is m{. We subtract this to the other side and subtract
G.QGQm, from both sides which leads to

(I - G.QGQ)(2(m° — z7'm?) = G.(—DmS + QGQMY).

As the argument of GG, on the right is a Schwartz function, we may use the invertibility
of the operator I — G,QGQ on L*>(LP) to obtain the expansion for m° and ¢ = 1.
We now proceed by induction. Our induction hypothesis is that

(I — G.QGQ)(z m—Zmzj = G.((—=D + QGQ)mY).

We repeat the manipulations from the first step. That is we begin by multiplying both
sides by z and then use (21.7). This gives

(I - G.QGQ)(~ EH Zm 27 =myy — G.(Dmy,)

We subtract the expression G.QGQmg, , from both sides and rearrange to obtain

41

(I - G.QGQR)(z""(m Zmzj = G.((-D + QGQ)mY, ).

This completes the proof of the induction step. Applying the inverse of the operator
I — G.QGQ, we obtain that z‘*1(m? Zﬁﬂ m2z7) lies in L>(LP).
To obtain the asymptotic expansion for the diagonal part, we write m? = I, +G.Qm?°

and substitute the expansion for m?°. 1
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21.3 The inverse of the scattering map.

In this section, we sketch the proof that we have an inverse to the scattering map 7.
To see this, we begin with the d-equation (20.14). The form of this equation is similar
to our equation for m in the x variable (18.3) and we shall see that we may adapt the
techniques used to study (18.3) to obtain a second representatation of the Jost solution
m as

m= (I - gT) (L) (21.8)

Here, we are using 7" to denote the map T'm(z, 2) = m(z, 2)S(z) A(z, —z) which appears
in the 0 equation, (20.14) and g denotes the Cauchy transform acting matrix-valued
functions of the variable z.

Exercise 21.9 Let m = (I — ¢gT)" defined in (21.8). Give a formal calculation which
shows that m is a solution of (18.3) and find an expression for Q in terms of S.
Hint: The answer is

Qx) = lj Tm(z,z)dz.

m R2

Here, J acts on 2 x 2 matrices by Ja = 2Ja° = —2a°J = [J,a] where [J,a] is the
commutator and the matrix J is as in the proof of Corollary 20.10.

Exercise 21.10 Justify each step in the previous exercise.
We want to establish a global existence result for the equation (20.14). To do this,
we will need a substitute for the condition @ = @* that we used in studying (18.3). This

substitute is given in the next Lemma.

Lemma 21.11 Suppose Q satisfies one of our standard conditions for uniqueness. With
T the scattering map defined by (20.12), we have T (£Q*)(z) = £5%(2).

Proof. We define two involutions on matrix valued functions on R* by
0 =1 0 +1
+ _ o
Llf(a:,z)—i(l 0)m(m,z)<1 O)'
Straightforward calculations show that

U*(D.m) = DU m, guim = Uiagm, and  UH(Qm) = £Q U m.
Z Z
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Thus, if m is the Jost solution to (18.3) for the potential Q, we may apply U* to both
sides of the equation D.m — (m and obtain

DU m = £Q* U m.

Also, UFm — I, € LP(R?) for every z. Thus, by uniqueness, U=m is the Jost solution for
+@Q*. Using this in the expression for the scattering data (20.12), we conclude that

-J

TEE)(=) = — . E.(xQU*m(z, 2)) dz
_=2J 0 ¢*H(@)mt (z, 2)al (z, =2) ) 4
o1 S ( 7% (z)m*(x,2)a?(x,—2z) 0 )d '

We have that a'(x, —z) = a*(z, —2) and a*(z, —z) = @'(z, —z) and substituting this into
the previous equation gives that

T(*+Q)(2) = £T(Q)*(2).

Remark. Using each of these formulae in succession gives that 7(—Q) = —7(Q).

Lemma 21.12 Suppose that S is an off-diagonal matriz-valued function with entries in
S(R?) and satisfying S(z) = S*(2). Suppose m is a function in LP for some p < 0o, and
m 1s a solution of the equation

9 )
£m(z) =m(2)A(z,2)S(z)

for some x. Then m = 0.

Proof. Our proof is essentially the same as Theorem 19.6. We let u®(z) = m!'(2) +
m!2(z) and v*(z) = m*(2) £ m??(z). Using that

0 ow ,_
ﬁw(z) = E(Z),

a straightforward calculation shows that

O Lo 21 -k

55l (2) = a*(x,2)S° (2)u™(2)
and for v*, we have

O L/ \_ 21 ik

557 (2) = a*(z, 2)S° (2)v™(2).

In both cases, our uniqueness theorem for pseudo-analytic functions, Theorem 19.4, imply
that u™ = v* = 0. 1
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With this lemma, we can prove the injectivity of the operator I — g7 and use the
Fredholm theory to find m = (I — gT)~!(l5) when we have S(z) = S*(Z) and say S is in
the Schwartz class. Of course, existence also follows when we have S small in L?.

Theorem 21.13 Suppose that Q) is in the Schwartz class and (Q = Q*. Then the map
T is injective on the set {Q: Q = Q*, Q¢=0, Q € S(R?)}.

Proof. According to Theorem 20.20, we have that if () is an self-adjoint off-diagonal
matrix valued function in S, then S = T(Q) is an off-diagonal matrix-valued function
satisfying S*(z) = S(z). Suppose we have two potentials (); and Q2 for which 7(Q;) =
T(Q2) = S. According to Theorem 20.20 we have that S is a matrix-valued Schwartz
function. Let m; and my denote the two Jost solutions. By the Corollary at the end of
Chapter 18 (not in the notes, yet), we have that m; — my is in LP(R?), thus for almost
every x, we may use the J-equation (20.14) and Lemma 21.12 to conclude that m; — ms
is zero. From Theorem 21.5, if m; = msy, we have that Q)1 = Q)». 1

Exercise 21.14 Show that T 1is injective for potentials which are in the Schwartz class
and which are small in L.

Our last result is to show that the map 7T is onto.

Theorem 21.15 The map T maps {Q : Q = Q*, Q € S(R?)} onto the set of matriz-
valued, off-diagonal Schwartz functions which satisfy S*(z) = S(2).

Proof. Let S be a matrix valued Schwartz function satisfying S*(z) = S(z). We may
imitate our study of solutions to the equation (18.3) to construct m which satisfies (20.14).
As in exercise 21.10, we can show that the Jost solution m satisfies (18.3) for some
potential Q). Imitating the (very long) proof of Theorem 20.20 gives that the potential
@ isin S. 1

Exercise 21.16 Show that T is onto the intersection of neighborhood of zero in L3 with
the Schwartz class.
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Chapter 22

The scattering map and evolution
equations

In this chapter, we develop further properties of the scattering map defined above and
show how this scattering map can be used to study a non-linear evolution equation. The
non-linear equation presented here was known prior to its treatment by the method of
inverse scattering. The equation first arose in the study of water waves.

Our first result gives a remarkable identity for the scattering transform which may be
viewed as a type of non-linear Plancherel identity for the scattering map 7. This identity
was fundamental in the treatment of the inverse conductivity problem in two dimensions
by the author and Uhlmann [9]. However, recent work of Astala and P&ivérinta have
provided a better treatment in two dimensions [3].

Next, we find the linearization of the scattering map 7 and its inverse. We use this to
help find a family of evolution equations which may be treated by the inverse scattering
method. The treatment we follow is taken from Beals and Coifman [4]. These results
may also be found in Ablowitz and Fokas [12].

22.1 A quadratic identity

We begin with a remarkable identity for the map 7. To motivate this result, we observe
that as the potential tends to zero in L?, examining the series for the Jost solution in
Chapter 18 gives that the Jost solution m converges to Is.

Thus, if we consider the linearization at 0, we find that for sufficiently nice potentials

183
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Q?
T(eQ)—T(0) -2 0 §'(22)

Jim c = 7‘]( P (—22) 0 ) '
Thus, this linearized map will satisfy some variant of the Plancherel identity. We will

show below that we have a similar identity for the non-linear map.
To give the proof of our identity, we start with the definition of the scattering map,

S()= 7 / E.(Qm) dz

and the definition of the inverse map
1
Qx) = ;j/m(:c,i)S(z)A(x, —Z)dx

which may be found in (20.12) and Exercise 21.10.
Thus, using (20.12) and Exercise 21.10, we obtain

/R2 trQ(z)’dr = ltr/R2 /R2 2Im(x,2)S(2) Al — 2)Q(x) dz dv

/0

_ 1, /R 2 /R S(2)(~2)Ale, ~2)QUu)m(z, ) du dz

_ / tr S(2)S(3) dz. (22.1)

In the second equality, we apply the simple identity

0611 O O 512 O ﬁ12 @22 O
(0 0422)(521 0)2(521 0)(0 an)'

First, to commute 2Jm% and S and then to commute m? and Q. Theorem 20.20 which
implies that S is in the Schwartz class and our estimates for the Jost solutions m in
Theorem 19.8 justify the use of Fubini’s theorem.

With this Lemma, we have the following Theorem.

Theorem 22.2 Suppose Let Q € S and suppose that either ”QHLi is small and QQ = —Q*
or that Q = Q*. With S =T (Q), we have that

J1@p iz = [ 152 d-
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Proof. If Q = Q*, then T(Q) = T(Q*) and hence, from Lemma 21.11, T(Q)(2)* =
T(Q)(2). The conclusion of our theorem follows from (22.1).

When @ = —Q*, then Lemma 21.11 implies that 7(Q)(z) = —T(Q)(2)* and thus
S(z) = =S5(2)*. Now, using the identity (22.1) and our Lemma 21.11, we obtain that

/]Q(a:)|2dx: —/tr(Q(x)Q(x))da: = —/trS(z)S(z) dz :/|S(z)]2 dz.

Exercise 22.3 (Open.) Show that the map T is continuous in the L*-norm.

22.2 The tangent maps

In this section, we look at the linearization of the map 7 or the tangent map. Thus, if
Q(t) is a curve in the Schwartz space, we will try to differentiate S(t) = T(Q(¢)) with
respect to t. We also will want to carry out the same exercise for Q(t) = T(S(t)). To
begin, we introduce some more notation. Given a potential Q, we let Q = —Q" where
Q' is the ordinary transpose of a matrix and then 7 will be the Jost solution for the
potential Q. We will use two matrix-valued forms

(han =1 [(F@gwayde  and  (fgn=1 [(Fle2gle -2 ds

1= =
s

Note that (f, g); will be a matrix valued function of x and (-,-), will be a matrix-valued
function of z. We observe that the formal transpose of () with respect to form (-,-); is
—Q. Thus, (Qf, g)1 = —(f,Qg)1. If we let D7 denote the transpose of D, with respect
to the form (-, -);, we have

Next, we observe that under our standard hypotheses, we have that (I — QG,)™! is an

invertible map on the dual of L? . Lg.

Lemma 22.5 Let Q) satisfy our standard hypotheses. Then the operator (I — QG.,) is
wnvertible on LZ and we have the identity

QU -G.Q)" =(-QG.)"'Q.
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Proof. Under our standard hypotheses, we have that (/—QG.)~! is an invertible map on
dual of L? ks L’,Z. To see this, observe that with respect to the bi-linear form [ tr(f'g)dx
the transpose of @ is Q" and the transpose of G is —G_,. Thus we have that (I —QG,)™!
is the transpose of (I — G,ZQ)_1 and our assumptions on () guarantee that the operator
I — G_.Q is invertible.

To establish the second part, we can begin with the identity

(I - QG.)Q = QI - G.Q)

and then apply (I — G.Q)~! on the right and (I — QG.)™! on the left. 1

We now find the relation between T(Q) and 7(Q). This is of some interest and the
techniques we develop are needed to find the tangent maps.

We begin with the definition of the scattering map, which may be expressed using
the form (-,-); as

TQ)(z) = —J(A_.,Qm)
= —J(A_.,(I - QG.) QL))
= JQU+GIQ) M (A_.), L)
TNQU — G_:Q) (1) A_., L)
J(Qm(, —2)A_., o) (22.6)

(@
(@
In this calculation, we have used F7 for the transpose of an operator F with respect
the form (-,-);. The second equality uses Lemma 22.5. The fourth equality depends on

(22.4) to rewrite the transpose of GT.
Now, we compute the action of the map 7 on the potential (). We have

TQ = —=J

|
|
Q

I
A/t/—\
Q
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Our next goal is to compute the tangent maps for 7 and 7 —!. Thus, we suppose that
we have a curve t — Q(t) where Q(t) is in the Schwartz class and we have that the time
derivative @) exists in L7. Thus we have

i QLR = Q)

h—0t h

— Q|2 = 0.

Now if we note that the estimate for the operator G,() and use Lemma A.5, we obtain
that

(@m) = Qm+Q(I - G.Q)™'G.Qm = (I — QG.)™ (Qm).

The last equality uses the identity that [ + B(I — AB)"'A= (I — BA)™!
Thus, with S = T(Q), we have

5() ~J (A, (Qm)):
~J(A. (I = QG (Qm)),
~J{(I = GIQT) " (A-), (Qm))
~T{(I = G_:Q) (1) A, Qm)
~J(mA_.,Qm)

Thus, we have proven that if Q(¢) is a curve in S which satisfies our standard hy-
potheses for the invertibility of (I — G,Q), and is differentiable in L, then we have
that

TQ(2) = =T (MmA_.,Qm)1.

Next, we consider the tangent map to the map 7 !. To do this, we will recall T'
which is defined using the scattering data S by T'm(x, z) = m(x, 2)S(2)A(z, —Z). Now
assuming that S is a curve in the Schwartz class which is differentiable in L2, we may
differentiate m to obtain

= (I —gT) N (gT)(I — gT) (L) = g(I = Tg)~"(T'm). (22.7)

Here, we have used the operator identity in Lemma 22.5 Differentiating T'm and using
(22.7) we obtain

(Tm) = Tm +Tin=Tm+Tg(I —Tg)""(Tm) = (I — Tg) " (T'm). (22.8)
Then according to Exercise 21.10, we have

TH8)(x) = T(Tm, L)
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Differentiating the right-hand side with respect to t and using our expression for (7' m)
in (22.8), we obtain

S=J(I—-Tg) Y (Tm), L.

From here, we use that transpose of 7" with respect to the form (-, -), is T defined using
S(z) = S(—2z)" and the transpose of g is again g. Thus, we obtain the tangent map for
-1

Q = (T'm,m), (22.9)

We have proven.

Theorem 22.10 Let t — Q(t) be a matriz-valued function defined on an interval in the
real line. Suppose that for each t, Q(t) lies in S and either ||Q| 2 is small for each t or

that Q = Q* for each t. If Q is differentiable as a map from the real line into L3, then
we have that S(t) = T(Q(t)) is (pointwise) differentiable with respect to t.

Similarly, if S(t) les in S and either |[S| 12 is small or S(z) = 5*(Z) and S is
differentiable as a function in L%, then Q(t) = T 1(S)(t) is (pointwise) differentiable
with respec to t.

Exercise 22.11 Show that S lies in the Schwartz class.

Exercise 22.12 Ift — Q(t) is differentiable as a map into the Schwartz class, is TQ
differentiable as a map into the Schwartz class?

22.3 The evolution equations

Finally, we show how the map 7 is connected to a family of evolution equations. Thus,
suppose that ¢ is a diagonal matrix-valued function and let ®(f)(z,2) = f(z,2)p(2).
Let T be the operation in the 0 equation, Tm(x, z) = m(z, 2)A(z, 2)S(z) for some off-
diagonal function S.

We let T be the derivative as operator on Lé , and consider the evolution equation

T =[®,T] (22.13)

where [A, B] = AB — BA is the commutator of the operators A and B.
If we write out [®, 7], we obtain

(@, T] = f(2,2)0(2)S(2)Ax, =2) = [f(x,2)5(2) Az, =2)¢(2)-
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As the diagonal matrices A and ¢ commute, we have that the operator equation (22.13)
is equivalent to the evolution for the function S

S(2) = ¢(2)8(2) = S(2)9(2).

If we have that the time derivative S exists in L2, then the operator T will be differentiable

as an operator on L? &, for example.
If we write Q = T 1(S) = (T'm, I5)5, then we have shown in (22.9) that

Q = j(Tm,?”h>2
= J((Tm)g,mm)> — T(T(mg), 1)
= J{(Tm)p,m)s — T ((mg), Trn),

where the last equality uses that the transpose of T' with respect to (-, -)s is T defined
using the scattering data S associated with 7. If we assume that ¢ has polynomial
growth at infinity, then integrals in the above are well-defined when the scattering data
S and S are in S(R?). We will write Tm = Zm and T = Zm and then integrate
by parts. As the leading term of m and m is the matrix Iy we have to be careful if we
want our integrals to make sense. Thus we introduce a cutoff function ng, which is one

if |z| < R and 0 for |z| > 2R. Thus, we have
O = Jm TA(Lmnag,m)s — T (mons, ~m)
e (%m NR®, 1M )2 monRr, 82m 2
: 0 -
= ]%E)I;O j(mﬁ(rm(b),m)g (22.14)
where we have integrated by parts. In the special case that ¢(z) = 2*I, the last limit
becomes 5
m 5= ed). )z = [Tm(a, )i, =)

Where [Jm(z, 2)m(z, —2)!], denotes the coefficient of 2~¢ in the asymptotic expansion

of Tm(x, 2z, —2)".
0= (5 0 )

If we let
then for ¢(z) = 2*, we have that S(z,t) = exp(it(z* — 2¥))S(z,0).

When £ = 2, a rather lengthy calculation using the asymptotic expansion of Theorem
21.5 gives that

lim J(
R—o0

Q(a:,t>:7(5)<t>:( 0 q%t))

q(z,t)
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where

_ _o? 2
A¢ ~ 0z10z2 |q’

Thus, to solve this system with a specified initial value, ¢(z), we may write
—1 12 0 ¢
Qe t) =T expl-aitz AT 5 8 )
and then the solution ¢(z,t) will be the 1,2 entry of Q.

We could go on to talk about Lax pairs, the infinite-dimensional Hamiltonian structure
and lots more. But not this year.

Exercise 22.15 Find the evolutions corresponding to z* for k=0 and 1.



Appendix A

Some functional analysis

A.1 Topologies

Below we summarize a few results from functional analysis.

We begin by recalling the standard topologies for linear operators between Banach
spaces. If B and C are Banach spaces, we let £(B,(C) denote the collection of all
continuous linear maps from B to C. If T' € L(B,C), then we define

1Ty = sup{||Tzllc - € Bllz|s < 1}.

It is well-known that || - ||z(s,c) is a norm. The topology induced by this norm is called
the norm topology.

However, there are two weaker topologies which are commonly used. The first is
called the strong topology. This is the coarsest topology which makes the maps T — T'x
continuous for each x in B. There is also the weak topology which is the coarsest topology
for which we have that T'— A(T'x) is continuous for all A € C* and = € B.

We are interested in operator valued functions z — T, where z is a complex parameter
and T, € L(B, C) for each z. We say that an operator valued function 7, is differentiable
in the strong operator topology if we have partial derivatives 07, /0z and 0T, /0Zz which
lie in £(B, ') and so that for each f in C,

0T,
0z

oT,
0z

.1 7
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A.2 Compact operators

Our goal here is to state the Fredholm theorem for operators on a Banach space X. We
begin by defining compact operators. An operator T': X — Y on a Banach space is said
to be compact if whenever {z;} is a bounded set in X, then {T'z;} contains a convergent
subsequence.

We state a few elementary properties of compact operators.

Lemma A.1 If T is a compact and S is bounded, then T'S and ST are compact.
The set of compact operators is closed in the operator norm.

Exercise A.2 Prove the above Lemma.
Exercise A.3 If the image of T is finite dimensional, then T is compact.

We state a version of the Fredholm alternative.

Theorem A.4 IfT: X — X is a compact operator, then ...

A.3 Derivatives

Our main goal is the following Lemma which gives conditions that guarantee that the
family of inverse operators is differentiable.

Lemma A.5 Let T, be a family of operators in L(B) and suppose that z — T, is a
family of operators which is differentiable at zy in the strong operator topology, that T,
exists for z near zo and that the operator norms | T, || are uniformly bounded for z near
29. Then, the family T is differentiable at zy and we have

9
0z

s, 0 0
T =-T =TT, and —T."=-T,"(

T)T 1.
0z * 20 9z 0z )T

Proof. The proof is more or less the same as the proof of the quotient rule in calculus.
We begin by observing that under these conditions, we have that z — 7! is continuous
at zp as a map from the complex plane into operators in the strong operator topology.
Towards this end, we write

(Tin = T = T3 (T = Tegn) T f-
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From the strong continuity of the family 7%, we have that limy,_o ||(T% —Tx+0)15 fll5 =
0. Our hypothesis that the norm of T, ! is bounded near z, allows us to conclude that

Ilzlir(l) ‘|Tz;}kh(Tzo - TZoJrh)T;olfHB = 0.

Thus, z — T, ! is strongly continuous at zq.
To establish the differentiability, we begin by writing

_ _ B 0 ~ 0 _
Tzoihf T f+ TZOl(h%TZO + h£TZO)TZ01f
_ _ 0 -0 _
= (Tzol - Tzo—l&—h)(haTZO _'_ hiTZO)Tzol‘f
_ 0 -0 _
+TZ01h(TZO+h — T, + hgTZO + hgTZO)Tzol f.

Recalling the strong continuity of 7, !, it follows that

. 1 -1 -1 0 ;0 -1 —
}ILIL% WH(TZO—I—h - Tzo )(h&Tzo + hﬁTZO)TZO fHB =0.

The differentiability of T, implies that

. ]_ -1 8 7 a —1
}lbli% WHTZO (Tzo—i-h - TZO + hETZO + hETzO)TZO fHB = 0.

The differentiability of 7. ! follows from the previous displayed equations. 1
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adjoint, 53, 92
Banach space, 1

Calderén-Zygmund kernel, 52
Calderon-Zygmund operator, 52
compact operators, 194
conormal derivative, 110

cubes, 54

derivative, 194

derivative, distribution, 18
Dirac delta, 17

Dirichlet problem, 104
Dirichlet to Neumann map, 110
divergence, 27, 97

divergence theorem, 97

dual space, 16

dyadic cubes, 54

Fourier transform, 1
Fréchet space, 13

gamma function, 9
gradient, 27

Holder continuous, 138
Hardy-Littlewood maximal function, 41

inverse conductivity problem, 112
Jost solutions, 154

Laplacian, 61

Lebesgue measure, notation, 41
length of a multi-index, 12
Littlewood-Paley function, 63
locally integrable , 42

lower semi-continous, 42

maximal function, 41
mutiplier operator, 27

normed vector space, 1
operator norm , 28

partition of unity, 96
principal value, 19

Riesz potentials, 70

scattering data, 173
scattering map, 176
scattering theory, 154
Schwartz space, 12
Sobolev inequality, 76
Sobolev space, 29
square function, 64
sub-linear operator, 38
symbol, 27

symbols of order k, 57

tempered distributions, 16

weak derivative, 97
weak-* topology, 22
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weighted L? space, L}, 16
Wiener algebra, 7
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