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The KP I Equation

The KP I equation is a nonlinear dispersive partial differential equation in two
spatial dimensions: {

(ut +6uux + uxxx )x = 3uyy

u(0, x , y) = u0(x , y)
(1)

that describes nonlinear, long waves of small amplitude with weak dispersion in
the transverse direction. It may be used to model waves in thin films with high
surface tension.
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Theorem 1: Large-Time Asymptotics for the KP I

Theorem 1 (SD, JL, PP)

Suppose that the initial data for the KP I equation lies in Zw and is small
in specific norms. Let

a =
1

12

ˆ

x

t
− y2

12t2

˙

Then,

u(t , x , y) ∼
t→∞



o
`

t−1
˘

, a > 0,

O
´

t−
2
3

¯

, a ∼ 0,

O
`

t−1
˘

, a < 0.

(2)

Here, Zw and the norms in which u is small will be defined later.

See Theorem 2 for more detailed asymptotics in different
space-time regions.
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Global Well-Posedness for KP I Equation

Molinet, Saut, and Tzvetkov [4] proved the global well-posedness
of the KP I equation for initial data belonging to the function
space:

Z = {u ∈ L2(R2) : ∥u∥Z < ∞}
with the norm

∥u∥Z = ∥u∥L2pR2q+∥uxxx∥L2(R2) + ∥uy∥L2(R2) + ∥uxy∥L2(R2) (3)

+
∥∥∂−1

x uy
∥∥
L2(R2)

+
∥∥∂−2

x uyy
∥∥
L2(R2)

.
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Function Space for the Initial Data

For our large-time asymtptotic analysis, we define

∥u∥Zw
= ∥u∥L2,2

x L2,3
y

+ ∥ux∥L2,1
x L2,3

y
+ ∥uy∥L2,1

x L2,2
y

(4)

+ ∥uxx∥L2xL2,2
y

+ ∥uxy∥L2xL2,2
y

+ ∥uxxx∥L2xL2,2
y

+
∥∥∂−1

x u
∥∥
L2xL

2,1
y

+
∥∥∂−1

x uy
∥∥
L2xL

2,1
y

+
∥∥∂−2

x uyy
∥∥
L2xL

2
y

+
∥∥∥∂y

− 1
2

x u
∥∥∥
L2xL

2,1
y

+
∥∥∂−1

x u
∥∥
L2xL

2
y
+
∥∥∂y∂2xu

∥∥
L2xL

2,1
y

+
∥∥∂y

2
xu

∥∥
L2xL

2,1
y

+
∥∥∂y

3
xu

∥∥
L2xL

2,1
y

where ∥f ∥L2,p
x L2,q

y
:=

`ť

(1 + x2)p(1 + y2)q |f (x , y)|2 dy dx
˘1/2 .

Note that

∥u∥Z À ∥u∥Zw
, (5)

i.e., Zw is continuously embedded in Z .
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Literature Result 1: Leading Asymptotics for KP I

Manakov, Santini and Takhtajan [3] formally derived the leading
asymptotics for the KP I equation using the stationary phase
method as follows: As t → ±∞,

u(t , x , y) = −1

t
rξ(ξ , η) Re

´

K (ξ , η)e16itr
3
+ o(1)

¯

(6)

with small initial data, where

r2 =
1

144
(η2 − 12ξ) (7)

with ”slow” variables ξ = x/t and η = y/t, and K (ξ , η) is an
approximation to the solution of a Gelfand-Levitan-Marchenko
integral equation by stationary phase methods.
Note that the leading asymptotic in (6) holds only in the
space-time region

η2 − 12ξ > 0. (8)
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Literature Result 2: Large-Time Asymptotics for ux of the
KP Equation

Hayashi and Naumkin [2] prove that for small initial data with
∂−1
x u0 ∈ H7 ∩H5,4, the x-derivative of the solution to the KP

equation has an asymptotic expansion of the form

ux(t , x , y) = t−1
´

ReA(z)V
´

κ,
y

2σt
κ

¯

+ o(1)
¯

where A(z) is a “half derivative Airy function”

A(z) =

?
2

?
3π

e−πσ/4
∫ ∞

0

a

ξe i(zξ+ξ3/3)dξ

with σ = −1 for the KP I equation and σ = +1 for the KP II
equation, and V is an L∞ function and

κ = (3t)−1/3
a

max(0,−z), z = (3t)−1/3
´

x + y2

4σt

¯

.
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Literature Result 3: Large-Time Asymptotics for ux of the
KP I Equation

Harrop-Griffith, Ifrim and Tataru [1] show that the x-derivative of
the solution to the KP I equation satisfies the pointwise bound

||ux(t)||L∞ À ϵt−1/2 < t >−1/2

if the initial data has a small norm

||u0||X≤ ϵ ≪ 1,
where

||u(0)||2X= ||u(0)||2L2+||uxxx (0)||2L2+||y2ux (0)||2L2+||(x∂x + y∂y )u(0)||2L2
and X is a Galilean-invariant space.

Samir Donmazov Joint work with Peter Perry and Jiaqi Liu. University of Kentucky

Long-Time Asymptotics for the Kadomtsev-Petviashvili I (KP I) Equation



Intro: Thm 1 and GWP Results in Literature IST for the KP I Equation Theorem 2 and Its Proof

Reconstruction Formula

A solution to the KP I equation is constructed through the Zhou’s
IST [5] as

u(t , x , y) =
1

π

∂

∂x

ĳ

e itS0(k ,l ;ξ ,η) `

T+(k , l) +T−(k , l)
˘

(9)

× µl(l , x ; y , t) dl dk
where

S0(k , l ; ξ, η) = (l − k)ξ − (l2 − k2)η + 4(l3 − k3)

is the phase function, T±(k , l) are scattering data and µl(l , x ; y , t)
is the solution to a nonlocal Riemann-Hilbert problem (RHP).
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Time-Zero Scattering Data and Scattering Solutions

In the direct problem, time-zero scattering data is constructed
through the initial data u(x , y) and scattering solutions
µ±(k , x ; y):

T±(k , l) = − i
?
2π

H(±(l − k))
∫

e i(l
2−k2)η

ru ∗ rµ±(l − k , η; k) dη (10)

where ru and rµ± are the partial Fourier transforms of u and µ± in
the x variable, respectively, and µ± is the solution of the equation

iµy + µxx + 2ikµx + u(x , y)µ = 0

lim
x→±∞

µ(k , x ; y) = 1
(11)

which can be analytically continued to ± Im k > 0.
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Integral Equations for µ±

rµ± obey the integral equation

rµ± =
?
2πδ(l) + g±

u (rµ±) (12)

where

g±
u (f )(l ; y) =

i
?
2π

∫ y

±l ·∞
e−il(l+2k)(y−η)(ru ∗ f )(l ; η) dη. (13)

Let

rµ±
#(k , l ; y) = rµ±(k , l ; y)−

?
2πδ(l)

Then, (12) can be written as an integral equation for pµ±:

rµ±
# = g±

u (
?
2πδ) + g±

u (rµ±
#) (14)
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Existence of µ± and Small Initial Data

The resolvent operator (I − g±
u )−1 is bounded from L∞

y L
2
l ,k to itself

and from L∞
k ,yL

1
l to itself such that

∥∥(I − g±
u )−1

∥∥
L∞
y L2l ,k

≤
∞

∑
n=0

˜ ∥ru∥L1l ,y
?
2π

¸n ∥ru∥
L2y L

2,−1
l?

π

∥∥(I − g±
u )−1

∥∥
L∞
k ,y L

1
l
≤

∞

∑
n=0

˜ ∥ru∥L1l ,y
?
2π

¸n+1

(15)

where ∥f ∥L2yL2,−1
l

:=
`∫

|l |−1|f (l , y)| dl dy
˘

1
2 . Hence, we require

∥ru∥L1l ,y <
?
2π, ∥ru∥L2yL2,−1

l
< ∞. (16)

With (16), the forward scattering map S : ru 7→ T± is continuous
from L1l ,y ∩ L2yL

2,−1
l to L2l ,k .
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Nonlocal RHP

The function µl(k , x ; y , t) in the reconstruction formula (9) solves
the nonlocal RHP

µl = 1+ CT µl (17)

which is determined by the time-evolved scattering data

T (t , k , l) = e4it(l
3−k2)T±(k , l)

for µl( · , x ; y , t)− 1 ∈ L2k(R
2).

Here
CT = C+T − +C−T +, (18)

(T ±f )(k) =
∫

e itS0(k ,l ;ξ,η)T±(k , l)f (l) dl (19)

and C± : L2k(R) → L2k(R) denoting the Cauchy projectors.
The existence of a solution to the nonlocal RHP requires

C :=
∥ru∥L1

l ,y
?
2π

< 1, ∥ru∥L2
yL

2,−1
l

<
1− C

4
. (20)
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Change of Variables

Define

a =
1

12

ˆ

ξ − η2

12

˙

, (21)

so that

r2 = −a,
where r2 is defined in (7) with ξ = x/t and η = y/t as before.
For convenience, we will make the following change of variables:

(k , l) →
´ η

12
+ k ,

η

12
+ l

¯

(22)

so that the phase function in shifted variables becomes

S(k , l ; a) = 12a(l − k) + 4(l3 − k3) (23)
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Phase Function and Space-Time Regions
The phase function S(k , l ; a) in (23) with a = (ξ − η2/12)/12 has

1 no critical points for a > 0,

2 a single degenerate critical point at (0, 0) for a = 0,

3 four non-degenerate critical points, (±
?
−a,±

?
−a) for

a < 0.

ξ

η
ξ − η2/12 = 0

No critical pointsCritical points

ξ − η2/12 > 0ξ − η2/12 < 0
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Reconstruction Formula Revisited

Write
rT±(k , l) = T±

´

k +
η

12
, l +

η

12

¯

(24)

Let

A(k , l) = i(l − k)
´

rT+(k , l) + rT−(k , l)
¯

.

The reconstruction formula can be written as
u(t , x , y) = uloc (t , x , y) + unonloc (t , x , y) (25)

where

uloc (t , x , y) =
1

π

∫
e itS(k ,l ;a)A(k , l) dk dl (26)

and

unonloc (t , x , y) =
1

π

∫
e itS(k ,l ;a)A(k , l)

´

µl
´

l +
η

12
, x ; y , t

¯

− 1
¯

dl dk (27)

+
1

π

∫
e itS(k ,l ;a)

´

rT+(k , l) + rT−(k , l)
¯ ∂µl

∂x

´

l +
η

12
, x ; y , t

¯

dl dk .
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Theorem 2: Large-Time Asymptotics for KP I

Theorem 2 (SD, JL, PP)

Suppose that u ∈ Zw , and u obeys (20). The following asymptotics hold as t → ∞:

(a)

uloc (t , x , y) ∼
t→∞



o
`

t−1
˘

, a > c > 0,

o
´

t−
2
3

¯

, t
2
3 |a|≤ c ,

1

t
Re

´

e i(16tr
3−π/2)

rT+(−r , r) a < −c < 0

+ e−i(16tr3+iπ/2)
rT+(r ,−r)

¯

+ o
`

t−1
˘

,

(b)

unonloc (t , x , y) ∼
t→∞



O
`

t−2
˘

, a > c > 0,

O
´

t−
2
3

¯

, t
2
3 |a|≤ c ,

O
`

t−1
˘

, a < −c < 0.
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Large-Time Decay Regions for the KP I Equation

ξ

η
ξ − η2/12 = 0

Rapid decayO
`

t−1
˘

decay

ξ − η2/12 > 0ξ − η2/12 < 0

Note:

a =
1

12

ˆ

ξ − η2

12

˙

.
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Local Term: No Critical Points

Proposition 1

Suppose that u ∈ Zw and u obeys (20). Suppose that a > c > 0. Then

uloc(t , x , y) = o(t−1). (28)

Proof.

First, using the Green’s identity∫
Ω
e itSAdσ = (it)−1

ˆ∫
∂Ω

e itSA
∇S · ν

|∇S |2 ds −
∫
Ω
e itS∇ ·

ˆ

A∇S

|∇S |2

˙

dσ

˙

, (29)

where Ω is a domain in R2 with a piecewise smooth boundary ∂Ω, and
∇S ̸= 0.
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Local No Critical Points: Proof of Proposition 1 (1/5)

Proof.

Let

S = S(k , l ; a) = 12a(l − k) + 4(l3 − k3),

A±(k , l) = i(l − k)
´

rT+(k , l) + rT−(k , l)
¯

,

Ω± = {(k , l) : ±(l − k) > 0},
and

Ω±
R = {(k , l) ∈ Ω± : l2 + k2 ≤ R2}.

Then

uloc(t , x , y) = lim
R→∞

uloc ,R(t , x , y)
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Local No Critical Points: Proof of Proposition 1 (2/5)

Proof.

where

uloc ,R(t , x , y) =
1

it ∑
{+,−}

„∫
∂Ω±

R

e itSA±(k , l)
∇S · ν

|∇S |2 ds (30)

−
∫
Ω±

R

e itS∇ ·
ˆ

A±(k , l)
∇S

|∇S |2

˙

dl dk

ȷ

For the boundary term, it suffices to consider∫
γ±
R

e itSA±(k , l)
∇S · ν

|∇S |2 ds

where

γ±
R = {(k , l) : ±(l − k) > 0, l2 + k2 = R2}.
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Local No Critical Points: Proof of Proposition 1 (3/5)
Proof.

Note that

|∇S(k , l ; a)| ∼ (a+ l2 + k2) (31)

|∆S(k , l ; a)| ∼ (a+ l2 + k2)
1
2 (32)

and we have the following estimate on the scattering data:

|(l − k)T±(k , l)| À 1. (33)

from which, we have ∥∥A±∥∥
L∞
l ,k

À 1

with (31),
ˇ

ˇ

ˇ

ˇ

ˇ

∫
γ±
R

e itSA±(k , l)
∇S · ν

|∇S |2 dσ

ˇ

ˇ

ˇ

ˇ

ˇ

À
R

1 + R2

vanish as R → ∞, i.e., the boundary terms in (30) vanish.
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Local No Critical Points: Proof of Proposition 1 (4/5)

Proof.

Let {gn} ⊂ C∞
0 (R2). Then the integrals

I±(gn) =
∫
Ω±

e itSgn(k , l)dσ (34)

can be integrated by parts N times to show that it is O(t−N). Let
g ∈ L1(R2). Since I± : g 7→ I±(g) is a continuous map from L1(R2) to
C, then by the density argument, I±(g) = o(1).
It suffices to show that the amplitudes

∇ ·
˜

A± ∇S

|∇S |2

¸

= (∇A±) · ∇S

|∇S |2 +A±∇ ·
ˆ

∇S

|∇S |2

˙

(35)

belong to L1(R2).
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Local No Critical Points: Proof of Proposition 1 (5/5)

Proof.

To show this, we estimate
ˇ

ˇ

ˇ

ˇ

∇
`

A±˘

· ∇S

|∇S |2

ˇ

ˇ

ˇ

ˇ

À
| rT±(k , l)|
a+ l2 + k2

+

ˇ

ˇ

ˇ
(l − k)∇ rT±(k , l)

ˇ

ˇ

ˇ

a+ l2 + k2
(36)

and
ˇ

ˇ

ˇ

ˇ

A±∇ ·
ˆ

∇S

|∇S |2

˙
ˇ

ˇ

ˇ

ˇ

À |A±|
ˆ

|∆S |
|∇S |2 +

|∇S · S ′′ · ∇S |
|∇S |4

˙

(37)

À |A±| (a+ l2 + k2)−
3
2

But we have the other estimates on the scattering data:

T±, (l − k)∇T± ∈ L2(R2). (38)

It follows that both quantities in (36) and (37) are in L1(R2).
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Local Term: Nondegenerate Critical Points

Proposition 2

Suppose that u ∈ Zw and u obeys (20). Suppose that a < −c < 0. Let
a = −r2. Then

uloc (t , x , y) ∼
t→∞

1

12t

´

e−i(16tr3−π/2)
rT+(−r , r) + e i(16tr

3−π/2)
rT−(r ,−r)

¯

(39)

+ o(t−1)
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Local Nondegenerate Critical Points: Proof of Proposition
2 (1/8)
Proof.
Recall that critical points are at (±r ,±r). Let ψ ∈ C∞

0 be a cut-off function with

ψ(s) = 1 for |s |≤ 1
2 and ψ(s) = 0 for |s |≥ 1. Define

ψa(l) = ψ

ˆ

16(l − r)

r

˙

+ ψ

ˆ

16(l + r)

r

˙

.

k

l l = k

(−r ,r) (r ,r)

(−r ,−r) (r ,−r)
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Local Nondegenerate Critical Points: Proof of Proposition
2 (2/8)

Proof.

Using partition of unity,

uloc(t , x , y) = uloc ,1(t , x , y) + uloc ,2(t , x , y) (40)

where

uloc ,1(t , x , y) = (41)

=
1

π

∫
e itS(k ,l ;a)ψa(k)ψa(l)A(k , l) dl dk

and

uloc ,2(t , x , y) (42)

=
1

π

∫
e itS(k ,l ;a)(1− ψa(k)ψa(l))A(k , l) dk dl
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Local Nondegenerate Critical Points: Proof of Proposition
2 (3/8)

Proof.

Set

A± = (1− ψa(l)ψa(k))i(l − k)
´

rT+ + rT−
¯

,

then similar to the proof of Proposition 1, it follows that

uloc ,2(t , x , y) = o(t−1). (43)

Now, write

uloc ,1 = u+loc ,1 + u−loc ,1

u±loc ,1(t , x , y) =
1

π

∫
e itS(k ,l ;a)H(±(l − k))ψa(k)ψa(l)i(l − k) rT±(k , l) dl dk
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Local Nondegenerate Critical Points: Proof of Proposition
2 (4/8)
Proof.

By an extension of Parseval’s Theorem,∫
R2

f (k , l)g(k , l) dl dk =
∫

R2

pf (−ξ1,−ξ2)pg(ξ1, ξ2) dξ1 dξ2, (44)

where we set

f (k , l) = e itS(k ,l ;a),

g(k , l) = iH(l − k)(l − k)ψa(k)ψa(l) rT+(k , l).

With l ′ = (12t)
1
3 l and k ′ = (12t)

1
3 k scaling

pf (−ξ1,−ξ2) =
2π

(12t)
2
3

Ai

ˆ

(12t)
2
3

ˆ

a− ξ1
12t

˙˙

Ai

ˆ

(12t)
2
3

ˆ

a+
ξ2
12t

˙˙

, (45)

where

Ai(z) =
1

2π

∫
e
i
´

s3

3 +zs
¯

ds (46)

is the Airy function.Samir Donmazov Joint work with Peter Perry and Jiaqi Liu. University of Kentucky
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Local Nondegenerate Critical Points: Proof of Proposition
2 (5/8)

Proof.

We also have

pg(ξ1, ξ2) =
1

2π

∫
e−i(ξ1k+ξ2l)ψa(k)ψa(l)i(l − k)H(l − k) rT+(k , l) dl dk . (47)

Let

A(ξ1, ξ2, a, t) = Ai

ˆ

(12t)
2
3

ˆ

a− ξ1
12t

˙˙

Ai

ˆ

(12t)
2
3

ˆ

a+
ξ2
12t

˙˙

pg(ξ1, ξ2), (48)

so that

u+loc ,1(t , x , y) = − 2π

(12t)
2
3

∫
A(ξ1, ξ2, a, t)dξ1 dξ2. (49)

We will extract additional t−1/3 decay from the integral in (49) to obtain
the leading asymptotic of u+loc ,1(t , x , y) using asymptotics of the Airy
function.
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Local Nondegenerate Critical Points: Proof of Proposition
2 (6/8)
Proof.

Let

z1 = (12t)
2
3

ˆ

a− ξ1
12t

˙

, z2 = (12t)
2
3

ˆ

a+
ξ2
12t

˙

be the arguments of the Airy functions in (48).
The leading asymptotic of the Airy function:

Ai(−x) ∼
x→∞

1
?

πx
1
4

cos

ˆ

2

3
x

3
2 − π

4

˙

+O
´

x−
7
4

¯

(50)

If z1 < −1 and z2 < −1, we can use the asymptotic in (50) for both Airy
functions in (48):

Ai(z1) ∼
t→∞

1
?

πrt
1
6

cos
´

8tr3 + ξ1r −
π

4

¯

+Or

´

t−
7
6

¯

(51)

Ai(z2) ∼
t→∞

1
?

πrt
1
6

cos
´

8tr3 − ξ2r −
π

4

¯

+Or

´

t−
7
6

¯

(52)
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Local Nondegenerate Critical Points: Proposition 2 (7/8)
Proof.

Let
ξ1(t) = 12t(a+ (12t)−

2
3 ), ξ2(t) = −12t(a+ (12t)−

2
3 ). (53)

Write
u+loc ,1(t , x , y) = I (t) + I c(t) (54)

where

I (t) = − 2π

(12t)
2
3

∫
ξ1>ξ1(t),ξ2<ξ2(t))

A(ξ1, ξ2, a, t) dξ1 d2 (55)

Note: z1 < −1 implies ξ1 > ξ1(t) and z2 < −1 implies ξ2 < ξ2(t), and

4 cos(8tr3 + ξ1r − π/4) cos
´

8tr3 − ξ2r − π/4
¯

= (56)

e i(16tr
3−π/2)e i(ξ1−ξ2)r + e i(ξ1+ξ2)r

+ e−i(ξ1−ξ2)r + e i(−16itr3+iπ/2)e−i(ξ1−ξ2)r

Using asymptotics (51) with the identity (56) in (55), we recover the
leading term in (39).
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Local Nondegenerate Critical Points: Proof of Proposition
2 (8/8)
Proof.

On the other hand, we have the estimate∥∥∥(1 + ξ21)
1
2 (1 + ξ22)

1
2

pg
∥∥∥
L2

À r 1 (57)

where

pg(ξ1, ξ2) =
1

2π

∫
e−i(ξ1k+ξ2l)ψa(k)ψa(l)i(l − k)H(l − k) rT+(k , l) dl dk . (58)

The estimate (57) implies that pg ∈ L1(R2) and
ĳ

ξ1>6tr2

|pg(ξ1, ξ2)| dξ1 dξ2 À (6tr2)−
1
2 , (59)

ĳ

ξ2<−6tr2

|pg(ξ1, ξ2)| dξ1 dξ2 À (6tr2)−
1
2 . (60)

It follows from (59) and (60) that I c(t) in (54):

I c(t) = o(t−1).
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Local Term: Degenerate Critical Point

Proposition 3

Suppose that u ∈ Zw , and u obeys (20). Suppose that t
2
3 |a|À c . Then

uloc(t , x , y) = o(t−
2
3 ). (61)

Proof.

As in the proof of Proposition 2, let

A(ξ1, ξ2, a, t) = Ai

ˆ

(12t)
2
3

ˆ

a− ξ1
12t

˙˙

Ai

ˆ

(12t)
2
3

ˆ

a+
ξ2
12t

˙˙

pg(ξ1, ξ2), (62)

where pg ∈ L1(R2) with ∫
pg(ξ1, ξ2) dξ1 dξ2 = 0

so that

uloc (t , x , y) = − 2π

(12t)
2
3

∫
A(ξ1, ξ2, a, t)dξ1 dξ2. (63)
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Local Degenerate Critical Point: Proof of Proposition 3
(1/1)

Proof.

Note that

Ai

ˆ

(12t)
2
3

ˆ

a− ξ1
12t

˙˙

− Ai
´

(12t)
2
3 a

¯

∼
t→∞

oξ1(1) (64)

Thus, by Dominated Convergence Theorem, it follows from (63) that

t
2
3 uloc(t , x , y) = 2π

∫
pg(ξ1, ξ2) Ai

´

(12t)
2
3 a

¯2
dξ1 dξ2 + o(1) (65)

= o(1)
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Large-Time Asymptotics of the Nonlocal Term

Proposition 4

Suppose that u ∈ Zw and u obeys (20). Then

|unonloc (t , x , y)|À


t−2, a > c > 0,
t−

2
3 , t

2
3 |a|≤ c ,

t−1, a < −c < 0.
(66)

Write

unonloc (t , x , y) = unonloc ,1(t , x , y) + unonloc ,2(t , x , y) (67)

where

unonloc ,1(t , x , y) =
1

π

∫
e itS(k ,l ;a)A(k , l)

´

µl
´

l +
η

12
, x ; y , t̊)− 1

¯

dl dk (68)

and

unonloc ,2(t , x , y) =
1

π

∫
e itS0(k ,l ;ξ,η)

´

rT+(k , l) + rT−(k , l)
¯

(69)

× ∂µl

∂x

´

l +
η

12
, x ; y , t

¯

dl dk .
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Nonlocal RHP Revisited (1/2)
Recall the nonlocal RHP:

µl = 1+ CT µl (70)

where

CT = C+T − + C−T +, (71)

(T ±f )(k) =
∫

e itS0(k ,l ;ξ ,η)T±(k , l)f (l) dl (72)

with

S0(k , l ; ξ , η) = (l − k)ξ − (l2 − k2)η + 4(l3 − k3)

Let

µl
# = µl − 1.

Then the nonlocal RHP becomes

µl
# = CT (1) + CT (µl

#). (73)

Hence, it suffices to consider

(T ±1)(k) =
∫

e itS0(k ,l ;ξ,η)T±(k , l) dl (74)
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Nonlocal RHP Revisited (2/2)
Differentiating (70) with respect to x ,

∂µl

∂x
= C∂T/∂x (µ

l ) + CT
ˆ

∂µl

∂x

˙

(75)

where

C∂T/∂x (f ) = C+
∂T −

∂x
f + C−

∂T +

∂x
f (76)

and
ˆ

∂T ±

∂x

˙

(f )(k) = ±
∫ ±∞

k
e itS0(k ,l ;ξ,η)i(l − k)T±(k , l)f (l) dl (77)

Equation (75) can be written for ∂µl
#/∂x as

∂µl

∂x
= C∂T/∂x (I − CT )−1CT (1) + C∂T/∂x (1) + CT

ˆ

∂µl

∂x

˙

(78)

Hence, it suffices to consider
ˆ

∂T ±

∂x
1

˙

(k) = ±
∫ ±∞

k
e itS0(k ,l ;ξ ,η)i(l − k)T±(k , l) dl (79)
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Large-Time Asymptotics of a Solution to the Nonlocal
RHP (1/2)
Lemma 3
Suppose that u ∈ Zw , and u obeys (20). Then, the estimates following asymptotics hold as
t → ∞:

(a)

∥∥∥µl − 1
∥∥∥
L2l

À



t−1, a > c > 0,

t−
1
3 , t

2
3 |a|≤ c ,

t−
1
2 , a < −c < 0,

(80)

(b)

∥∥∥∥ ∂µl

∂x

∥∥∥∥
L2l

À



t−1 , a > c > 0,

t−
1
3 , t

2
3 |a|≤ c ,

t−
1
2 , a < −c < 0,

(81)
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Large-Time Asymptotics of a Solution to the Nonlocal
RHP (2/2)
Lemma 4
Suppose that u ∈ Zw , and u obeys (20). Then, the estimates following asymptotics hold as
t → ∞:

(a)

∥∥T ±(1)
∥∥
L2l

À



t−1, a > c > 0,

t−
1
3 , t

2
3 |a|≤ c ,

t−
1
2 , a < −c < 0,

(82)

(b)

∥∥∥∥ ∂T ±

∂x
(1)

∥∥∥∥
L2l

À



t−1, a > c > 0,

t−
1
3 , t

2
3 |a|≤ c ,

t−
1
2 , a < −c < 0,

(83)
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