PT-Symmetric Hamiltonians

Samir Donmazov

Parity and Time Reversal Operators

1. Parity

Let

$$\mathcal{P}(N) = \{P \in O(N) | det(P) = -1\}$$

$$\tag{1}$$

be subgroup of O(N) with det = -1, where $P^2 = 1$ for any $P \in \mathcal{P}$, i.e. $P^{\dagger} = P^{-1} = P$. Since P has ± 1 eigenvalues let

$$P_0 = diag\{1, 1, ..., 1, -1, -1, ..., -1\}$$
⁽²⁾

be the diagonal form of P with n_+ number of +1 and n_- number of -1 eigenvalues, where $n_+ + n_- = N$ and $(1)^{n_+}(-1)^{n_-} = -1$ (i.e. det = -1). Then we can write P in general as

$$P = RP_0 R^{-1} \tag{3}$$

(4)

where R is N-dimensional rotation matrix having N(N-1)/2 free parameters. Using

 $N(N-1)/2 - n_{+}(n_{+}-1)/2 - n_{-}(n_{-}-1)$

one can show that P has

$$N^2/4 - (1 - (-1)^N)/8$$
⁽⁵⁾

free parameters.

For N = 2,

$$P = \begin{pmatrix} \cos\phi & \sin\phi\\ \sin\phi & -\cos\phi \end{pmatrix}$$
(6)

having one free parameter.

2. Time Reversal

Let

$$T = UK \tag{7}$$

where U is an unitary operator and K is c.c. operator with $K^2 = 1$.

We know that

$$T^{2} = \begin{cases} 1, & \text{integer spin} \\ -1, & \text{half-integer spin} \end{cases}$$
(8)

PT-Symmetric Hamiltonians

1. Finite-Dimensional Matrix Representation of PT-Symmetric Hamiltonians

By definition, PT-symmetric Hamiltonians satisfy

$$[H, PT] = 0 \tag{9}$$

Let's consider $T^2 = 1$, and take U = 1. Also notice that [T, P] = 0. Then (9) implies

$$P_0 H_0^* = H_0 P_0 \tag{10}$$

where $H = RH_0R^{-1}$ with $H \in M_N(\mathbb{C})$.

For N = 2, let

$$H_0 = \begin{pmatrix} a_1 + ib_1 & a_2 + ib_2 \\ a_3 + ib_3 & a_4 + ib_4 \end{pmatrix}, P_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(11)

where $a_i, b_i \in \Re$ for i = 1, 2, 3, 4

Solving (10) for (11) gives

$$H_0 = \begin{pmatrix} a_1 & ib_2\\ ib_3 & a_4 \end{pmatrix} \tag{12}$$

Let H be symmetric to have orthogonal eigenvectors. Then

$$H_0 = \begin{pmatrix} a & ib\\ ib & c \end{pmatrix} \tag{13}$$

for any $a, b, c \in \Re$.

If (13) is generalized to any N,

$$H_0 = \begin{pmatrix} A & iB\\ iB^T & C \end{pmatrix} \tag{14}$$

having the 2×2 block form, where A is a real symmetric $n_+ \times n_+$ matrix, C is a real symmetric $n_- \times n_-$, and B is a real $n_+ \times n_-$ matrix.

Notice that H_0 in (14) has

$$N(N+1)/2$$
 (15)

free parameters. Then in accordance with (3), the number of free parameters in H is equal to the sum of the number of free parameters in H_0 (15) and the number (5) of free parameters in P, which is

$$3N^2/4 + N/2 - (1 - (-1)^N)/8$$
(16)

Let's also find the most general 2×2 PT-symmetric Hamiltonian, which has four free parameters according to (16). Using the explicit form of the rotation matrix $R \in SO(2)$ and H_0 in (13), we

find H as

$$H = \begin{pmatrix} a + b\cos\phi - ic\sin\phi & ic\cos\phi + b\sin\phi\\ ic\cos\phi + b\sin\phi & a - b\cos\phi + ic\sin\phi \end{pmatrix}$$
(17)

Note that a, b, c, ϕ (renamed free parameters) in (17) are different from those used above.

2. Algebraic Properties of PT-Symmetric Hamiltonians Proposition 1.

Let

$$\mathcal{H}(N) = \{ H \in M_N(\mathbb{C}) | [H, PT] \}$$
(18)

For a fixed element U in $\mathcal{H}(N)$, define a function $\phi_U : \mathcal{H}(N) \to \mathcal{H}(N)$ by $\phi_U(H) = UHU^{-1}$. Show that ϕ_U is an automorphism of $\mathcal{H}(N)$ (inner automorphism induced by U), i.e. $\phi_U \in Aut(\mathcal{H}(N))$ such that $Inn(\mathcal{H}(N)) = \{\phi_U | U \in \mathcal{H}(N)\}$ where $Inn(\mathcal{H}(N)) \leq Aut(\mathcal{H}(N))$.

Proof: Suppose $UHU^{-1} \in \mathcal{H}(N)$. We want to show that ϕ_U is isomorphism of $\mathcal{H}(N)$ to itself, i.e. $\phi_U \in Aut(\mathcal{H}(N))$.First, we show that ϕ_U is homomorphism. For any $H_1, H_2 \in \mathcal{H}(N)$, $\phi_U(H_1H_2) = UH_1H_2U^{-1} = UH_1U^{-1}UH_2U^{-1} = \phi_U(H_1)\phi_U(H_2)$. Next, we show that ϕ_U is one-to-one. Notice that $\phi_U(H_1) = \phi_U(H_2) \Rightarrow UH_1U^{-1} = UH_2U^{-1} \Rightarrow U^{-1}(UH_1U^{-1})U =$ $U^{-1}(UH_2U^{-1})U \Rightarrow H_1 = H_2$. Then we show that ϕ_U is onto. We know that $U^{=1}HU \in \mathcal{H}(N)$ for every U and H in $\mathcal{H}(N)$ since $\mathcal{H}(N)$ is a group. Now, for every H in $\mathcal{H}(N)$, notice that the image of $U^{-1}HU$ is H, $\phi_U(U^{-1}HU) = U(U^{-1}HU)U^{-1} = (UU^{-1})H(UU^{-1}) = eHe = H$. Therefore, ϕ_U is an automorphism of $\mathcal{H}(N)$.

Notice that $\phi_{PT} = id$, identity map in $Aut(\mathcal{H}(N))$ since $\phi_{PT}(H) = PTH(PT)^{-1} = H$ for every H in $\mathcal{H}(N)$ and PT in $\mathcal{H}(N)$.

Proposition 2.

Show that if $H \in \mathcal{H}(N)$, then $Char(H)(E) \in \Re[E]$, where E are energy eigenvalues of H, i.e. if H is a PT-symmetric Hamiltonian, then coefficients of its characteristic polynomial are real.

Proof 1: Note that $det(H - EI) = det(PTHT^{-1}P^{-1} - EI) = det(THT^{-1} - EI)$. If we take T in (7) where $T^{-1} = KU^{-1}$, we get $det(H - EI) = det(H^* - EI)$. Thus H and H^* have the same set of eigenvalues, then H has a real characteristic polynomial. This conclusion is valid for any choice of linear operators P and U and antilinear operator T.

Proof 2: Note that the characteristic equation of H can written as $\sum_{n} a_n E^n = 0$. We know that every square matrix satisfies its own characteristic equation (Cayley-Hamilton Theorem), i.e. $\sum_{n} a_n H^n = 0$. If $[H, \kappa] = 0$ for *any* antilinear operator κ , then H also obeys $\sum_{n} a_n^* H^n = 0$. Thus the characteristic polynomial of H is real.

Proposition 3.

Let H_1 and H_2 be similar matrices in $\mathcal{H}(N)$ such that $H_2 = UH_1U^{-1}$ for some inevitable matrix U. Show that H_1 and H_2 have the same characteristic polynomial.

Proof: The characteristic polynomial of H_2 is $det(UH_1U^{-1} - E_1I) = det(UH_1U^{-1} - UE_1IU^{-1}) = det(U(H_1 - E_1I)U^{-1}) = det(U)det(H_1 - E_1I)det(U^{-1}) = det(U)det(U^{-1})det(H_1 - E_1I) = det(UU^{-1}(H_1 - E_1I)) = det(H_1 - E_1I).$