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Associated Schrödinger Equation
The KdV equation is given by

qt − 6qqx + qxxx = 0 (1)

which is related to the modified KdV equation (MKdV)

vt + 6v2vx + vxxx = 0 (2)

by

qt − 6qqx + qxxx = (2v − i
∂

∂x
)(vt + 6v2vx + vxxx )

where

q = v2 − ivx (3)

is Miura transformation

So, if v(x , t) is a solution of (2), then q(x , t) is a solution of (1).

Since (3) is a Riccati equation, then the Miura transformation can be linearized
by

v(x , t) = −i ψx

ψ
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Associated Schrödinger Equation (ct’d)

which gives us the Schrödinger equation with zero energy

q = −ψxx

ψ

Since the KdV equation is Galilean invariant,

ψxx + (λ + q(x , t))ψ = 0

Gardner, Greene, Kurskal and Miura (GGKM) later discovered that the
Schrödinger equation can be used to to integrate the KdV equation.

Samir Donmazov University of Kentucky

Solving KdV by using Inverse Scattering Transform



Forward Scattering Time-Evolution of Scattering Data Inverse Scattering Soliton Solutions

Jost Solutions of the Schrödinger Equation

Consider the KdV equation,

qt − 6qqx + qxxx = 0

and the associated time-independent Schrödinger equation,

ψxx − (q − λ)ψ = 0

where q = q(x) is a real potential in

L12 = {p(x) |
∫ ∞

−∞
(1 + |x |2)|p(x)|dx < ∞}

Let ψ1(x , k) and ψ2(x , k),k ∈ R \ {0} be the solutions of Hψj = k2ψj ,
j = 1, 2, where λ = k2.
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Jost Solutions of the Schrödinger Equation (ct’d)

Asymptotic to the solutions are

ψ1(x , k) ∼ e ikx as x → ∞, ψ2(x , k) ∼ e−ikx as x → −∞

Note that as x → ±∞, respectively, ψ1(x , k) and ψ2(x , k) are asymptotic to
sums of exponentials

ψ1(x , k) ∼ 1

T2(x)
e ikx +

R2(k)

T2(k)
e−ikx , x → −∞

ψ2(x , k) ∼ 1

T1(x)
e−ikx +

R1(k)

T1(k)
e ikx , x → −∞

where T2(k)ψ1(x , k) describes a plane wave e ikx coming from −∞ which
transmits T2e

ikx to ∞ and reflects R2e
−ikx to −∞. Similarly, T1(k)ψ2(x , k)

describes scattering from ∞.
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Normalized Jost Solutions
Normalized Jost solutions are defined as

m1(x , k) = e−ikxψ1(x , k), m2(x , k) = e ikxψ2(x , k)

Then the time-independent Schrödinger equation becomes

m”
1 + 2ikm

′
1 = qm1,

m”
2 − 2ikm

′
2 = qm2 (1)

with m1 − 1→ 0 as x → ∞ and m2 − 1→ 0 as −∞.

Converting (1) into an integral equation and solving by Volterra series,

m1(x , k) = 1 +
∫ ∞

0
e2ikyB1(x , y)dy ,

m2(x , k) = 1 +
∫ 0

−∞
e−2ikyB2(x , y)dy

These representations imply that m1, m2 extend to C+, so m1 − 1 ∈ H2+,
m2 − 1 ∈ H2+.
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Hardy Space

H2+ denotes the Hardy space of functions h(k) analytic in =(k) > 0 with

sup
b>0

∫ ∞

−∞
|h(a+ ib)|2da < ∞

Boundary values for h(k) ∈ H2+ is h(a) = limε→0 h(a+ iε) ∈ L2(−∞, ∞)

Note that we us the following FT and IFT convention:

F{f }(k) =
∫ ∞

−∞
e2iky f (y)dy

F−1{f }(y) = 1

π

∫ ∞

−∞
e−2iky f (k)dk
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Hardy Space (ct’d)

Equivalently, we have the following description,

H2+ = {h(k) ∈ L2(−∞, ∞) | suppF−1{h} ⊂ (0, ∞)}

Similarly, H2− denotes the Hardy space of functions analytic in =(k) < 0 and

H2− = {h(k) ∈ L2(−∞, ∞) | suppF−1{h} ⊂ (−∞, 0)}

h+ = F{1(0,∞)F−1{h}} and h− = F{1(−∞,0)ĥ} are operators projecting L2

onto H2+ and H2−, respectively. Thus,

L2 ∼= H2+ ⊕H2−
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Scattering Coefficients
Let m1(x , k) and m2(x , k) be normalized Jost solutons such that
ψ1(x , k) = e ikxm1(x , k) and ψ2(x , k) = e−ikxm2(x , k) solve the Schrödinger
Equation

−ψ”
j + qψj = k2ψj , j = 1, 2,

with ψ1 ∼ e ikx as x → ∞ and ψ2 ∼ e−ikx as x → −∞.

Note that for real k 6= 0, ψ1(x , k) and ψ1(x ,−k) are two linearly independent
solutions since the Wronskian

[ψ1(x , k), ψ1(x ,−k)] = ψ
′
1(x , k)ψ1(x ,−k)− ψ1(x , k)ψ

′
1(x ,−k) = const.

= lim
x→∞

(
(ik)e ikxe−ikx − e ikx (−ik)e−ikx + o(1)

)
= 2ik 6= 0

Similary, [ψ2(x , k), ψ2(x ,−k)] = −2ik 6= 0.
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Scattering Coefficients (ct’d)
So, there are unique functions T1(k), T2(k), R1(k), R2(k), called transmission
and reflection coefficients, such that, for real k 6= 0

ψ2(x , k) =
R1(k)

T1(k)
ψ1(x , k) +

1

T1(k)
ψ1(x ,−k)

ψ1(x , k) =
R2(k)

T2(k)
ψ2(x , k) +

1

T2(k)
ψ2(x ,−k)

In terms of m1 and m2,

T1(k)m2(x , k) = R1(k)e
2ikxm1(x , k) +m1(x ,−k)

T2(k)m1(x , k) = R2(k)e
−2ikxm2(x , k) +m2(x ,−k)

Now, for real k 6= 0, define the scattering matrix as

S(k) =

(
T1(k) R2(k)
R1(k) T2(k)

)
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Scattering Coefficients (ct’d)
Then,

1

T1(k)
=

1

2ik
[ψ1(x , k), ψ2(x , k)] =

1

T2(k)
,

R1(k)

T1(k)
=

1

2ik
[ψ2(x , k), ψ1(x ,−k)] ,

R2(k)

T2(k)
=

1

2ik
[ψ2(x ,−k), ψ1(x , k)] ,

Thus,

T1(k) = T2(k) = T (k), (1)

R1(k)T2(−k) + R2(−k)T1(k) = 0 (2)

with

T (k) = T (−k), R1(k) = R1(−k), R2(k) = R2(−k) (3)
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Scattering Coefficients (ct’d)

From (1),(2),(3), we obtain

|T (k)|2 + |R1(k)|2 = 1 = |T (k)|2 + |R2(k)|2

Hence, S is a unitary matrix for each real k 6= 0.
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Bound States: Norming Constants

Let H be the self-adjoint Schrödinger operator −d2/dx2 + q(x) with a real
potential q ∈ L12. Then H has finite number of bound states −κ2n < · · · < −κ21
associated with eigenfunctions f (x , iκj ), j = 1, · · · , n. Also, norming constants
are defined by

cj =

(∫ ∞

−∞
ψ2(x , iκj )dx

)−1
Hence, we obtain the scattering data {κj , cj ,R(k)}, which uniquely determines
the potential u(x , t) for each fixed t.

Samir Donmazov University of Kentucky

Solving KdV by using Inverse Scattering Transform



Forward Scattering Time-Evolution of Scattering Data Inverse Scattering Soliton Solutions

Simultaneous Solutions of KdV and Schrödinger equations

Consider the associated Schrödinger equation

ψxx − (q − λ)ψ = 0 (1)

where q(x , t) is a solution of the KdV equation

qt − 6qqx + qxxx = 0 (2)

so that ψ(x , t) and λ(t) depend on parameter t. Solving (1) for q, then
substituting into (2),

λtψ2 + [ψQx − ψxQ ]x = 0 (3)

where

Q = ψt + ψxxx − 3(q + λ)ψx
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Simultaneous Solutions of KdV and Schrödinger Equations
(ct’d)

Assume ψ vanishes as |x | → ∞. Then, one can check that the second term of
(3), [ψQx − ψxQ ]x , vanishes on integration over (−∞, ∞). Thus, λt = 0.
Then, (3) becomes [

Q

ψ
ψ2

]
x

= 0 (4)

Integrating (4) twice,

ψt + ψxxx − 3(q + λ)ψx = Cψ +Dφ (5)

where

φ = ψ
∫ x

−∞

dx ′

ψ2
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Time-Evolution of Norming Constants

Now, consider time-independent discrete eigenvalues λj < 0, j = 1, 2, ..., n,
where corresponding eigenfunctions ψj satisfy (5) .

Note that D = 0 since ψj vanishes as |x | → ∞. Also, C = 0 since ψj are
assumed to be orthonormal.

So, substituting ψj ≈ cj (t)e
−κnx as x → ∞ with κj = (−λj )

1/2 into (5),

cj (t) = cj (0)e
4κ3

j x
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Time-Evolution of Scattering Coefficients
For λ = k2 > 0, solutions of (1) at large |x | are

ψ ≈ e−ikx + Re ikx as x → ∞ (6)

ψ ≈ Te−ikx as x → −∞ (7)

where T (k, t) and R(k, t) are transmission and reflection coefficients,
respectively. Note that |T |2 + |R |2 = 1.

Assuming that λ is constant, then substituting (6) and (7) into (5), we obtain
D = 0 and C = 4ik3, and

R(k, t) = R(k, 0)e8ik
3t

T (k, t) = T (k, 0)

Thus, we obtain the time-evolved scattering data,

{κj , cj (t),R(k, t)}
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Derivation of Gel’fand-Levitan-Marchenko Equation

Consider the following equation

T (k)m2(x , k) = m1(x ,−k) + R1(k)e
2ikxm1(x , k) (1)

Subtracting 1 from both sides, let us rewrite the LHS of (1) as

T (k)(m2(x , k)− 1) +T (k)− 1 (2)

where T (k) is bounded and analytic in C+, m2(x , k)− 1 ∈ H2+ and
T (k)− 1 ∈ H2+

Also, rewrite the RHS of (1) as

(m1(x ,−k)− 1) + R1(k)e
2ikx + R1(k)e

2ikx (m1(x , k)− 1) (3)
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Derivation of Gel’fand-Levitan-Marchenko Equation (ct’d)

Now, take the inverse Fourier of the first term in (3) (RHS)

F−1{m1(x ,−k)− 1} = 1

π

∫ ∞

−∞
e2iky (m1(x ,−k)− 1)dk (1)

=
1

π

∫ ∞

−∞
e2iky

∫ ∞

0
e−2iky

′
B1(x , y ′)dy ′dk

= B1(x , y), y > 0

IFT of second term in (3) gives,

F−1{R1e
2ikx} = F1(x + y), y > 0 (2)
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Derivation of Gel’fand-Levitan-Marchenko Equation (ct’d)

Third term ...

F−1{R1(k)e
2ikxm1(x , k)− 1} =

∫ ∞

−∞
F1(x + y + t)B1(x , t), y > 0

and the IFT of (2) (LHS) is

F−1{T (k)m2(x , k)− 1} = 0, y > 0

Thus, we obtain the Gel’fand-Levitan-Marchenko Equation with no bound
states

B(x , y) + F (x + y) +
∫ ∞

0
F (x + y + t)B(x , t)dt = 0, y > 0

where F (y) = F−1{R}(y) = 1
π

∫ ∞
−∞ R(k)e2ikydk
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Existence and Uniqueness
Consider the time-independent Gel’fand-Levitan-Marchenko Equation.

B(x , y) + Ω(x + y) +
∫ ∞

0
Ω(x + y + t)B(x , t)dt = 0, y > 0 (1)

where Ω(y) = F (y) + ∑n
j=1 cj (t)e

−2κjy and F (y) 1
π

∫ ∞
−∞ R(k)e2ikydk.

Fix x , and let g(y) = B(x , y), where g ∈ L2[0, ∞). Then, (1) becomes,

Ω(y) + g(y) +
∫ ∞

0
Ω(y + t)g(t)dt = 0

Define T (g)(y) =
∫ ∞
0 Ω(y + t)g(t)dt such that

Ω + (I +T )g = 0 (2)

Note that T is a Hilbert-Schmidt operator, i.e. Ω ∈ L2(R), then T is
compact. It can be shown that ker(I +T ) = {0}. Thus, (I +T )−1 exists by
Fredholm alternative. Then (2) has a unique solution, and the solution is

g = −(I +T )−1Ω
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n-Soliton Solution
Consider the Gel’fand-Levitan-Marchenko.

B(x , y , t) + Ω(x + y , t) +
∫ ∞

x
Ω(z + y , t)B(x , z , t)dz = 0, x < y < ∞ (1)

where

Ω(y , t) = F (y , t) +
n

∑
j=1

cj (t)e
−κjy

F (y , t) = R̂(y , t) =
1

2π

∫ ∞

0
R(k, t)e ikydk

Recover the time-dependent solution of the KdV equation by using

q(x , t) = −2
∂B(x , x , t)

∂x
(2)

Set R(k, t) = 0 for the n-soliton solution. Let

X (x) := [e−κ1x e−κ2x ... e−κnx
], Y (y , t) :=


c1(t)e

−κ1y

c2(t)e
−κ2y

...
cn(t)e−κny
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n-Soliton Solution (ct’d)
We obtain,

Ω(x + y , t) = X (x)Y (y , t)

Assume the solution of the Gel’fand-Levitan-Marchenko Equation has the form
B(x , y , t) = H(x , t)Y (y , t) where H(x , t) is a row vector. Substituting into
(1),

H(x , t)Y (y , t) + X (x)Y (y , t) +
∫ ∞

x
H(x , t)Y (z , t)X (x)Y (y , t)dz = 0

Then, we obtain,

H(x , t) = −X (x)Γ(x , t)−1

where

Γ(x , t) = I +
∫ ∞

x
Y (z , t)X (z)dz (3)

So,

B(x , y , t) = −X (x)Γ(x , t)−1Y (y , t) (4)
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n-Soliton Solution (ct’d)
Thus,

Γi ,j = δij +
∫ ∞

x
ci (t)e

−(κi+κj )z

= δij + ci (0)
e−(κi+κj )x+8κ3

i t

κi + κj

Substituting (4) into (2),

q(x , t) = 2
∂
[
X (x)Γ(x , t)−1Y (x , t))

]
∂x

= 2tr

(
∂
[
Y (x , t)X (x)Γ(x , t)−1

]
∂x

)
Note from (3) that

∂Γ(x , t)

∂x
= −Y (x , t)X (x)

Therefore,

q(x , t) = −2tr

(
∂[ ∂Γ(x ,t)

∂x Γ(x , t)−1]

∂x

)
= −2

∂

∂x

[
∂ det Γ(x ,t)

∂x

det Γ(x , t)

]
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One-Soliton Solution

Now, set n = 1,then,

∂ det Γ(x ,t)
∂x

det Γ(x , t)
=

−c1(0)e−2κ1x+8κ3
1t

1 +
(
c1(0)e−2κ1x+8κ3

1t
)

/(2κ1)
(5)

After differentiating (5) with respect to x , let

θ := log

[
2κ1
c1(0)

]1/2

Then, we obtain

q(x , t) = −2κ21sech
2[κ1x − 4κ31t + θ]
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Appendix: Riccati Equation

The Riccati equation is given by

y
′
(x) = a2(x)y

2(x) + a1(x)y(x) + a0(x) (1)

where a2(x) 6= 0 and a0(x) 6=0.

(1) can always be reduced to a second order linear ODE whenever a2 is
nonzero and differentiable, then v = ya2 satisfies a Riccati equation of the form

v
′
(x) = v2(x) + B(x)v(x) + C (x)

where C = a2a0 and B = a1 + q
′
2/q2. Now, substituting v = −u ′/u,

u”(x)− B(x)u
′
(x) + C (x)u(x) = 0 (2)

where a solution of (2) is related to a solution of (1) by y = −u ′/(a2u).
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Appendix: Integral Equation

Consider the time-independent Schrödinger Equation

m” + 2ikm
′
= qm

Or symbolically,

∂x (∂x + 2ik)m = qm (1)

To invert the operator (1),we uses the Green’s function

Dk (t − x) =
∫ t−x

0
e2iktdt =

1

2ik
(e2ik(t−x) − 1)

For each k, =(k) > 0, we obtain the integral equation

m(x , k) = 1 +
∫ ∞

x
Dk (t − x)q(t)m(t, k)dt
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Appendix: Volterra Series for m(x , k)
Consider the following iteration.

m0(x) = 1

mn+1(x , k) = 1 +
∫ ∞

x
Dk (t − x)q(t)mn(t, k)dt

Thus, we obtain the Volterra Series

m(x , k) = 1 +
∞

∑
n=1

gn(x , k)

where

gn(x , k) =
∫
x6x1···6xn

Dk (x1 − x)q(x1) · · ·Dk (xn − xn−1)q(xn)dxn · · · dx1

which gives us

m(x , k) = 1 +
∫ ∞

x
Dk (t − x)q(t)m(t, k)dt
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Appendix: Volterra Series Convergence
We have

m(x , k) = 1 +
∞

∑
n=1

gn(x , k)

where

gn(x , k) =
∫
x6x1···6xn

Dk (x1 − x)q(x1) · · ·Dk (xn − xn−1)q(xn)dxn · · · dx1

Note that

|gn(x , k)| 6
∫
x6x1···6xn

1

|k |n |q(x1)| · · · |q(xn)|dxn · · · dx1 =
1

|k |n

(∫ ∞
x |q(t)|dt

)n
n!

where Dk (y) 6 1/|k |, =(k) > 0.

Let γ(x) :=
∫ ∞
x |q(t)|dt/|k |. Then, for |k | > 0,∣∣∣∣∣ ∞

∑
n=1

gn(n, k)

∣∣∣∣∣ 6 eγ(x) − 1 < ∞
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Appendix: Volterra Series for B(x , y)
Taking the inverse Fourier transform of

m” + 2ikm
′
= qm

we obtain

∂2B/∂x∂y − ∂2B/∂x2 + qB = 0

Let

B(x , y) =
∞

∑
n=1

Kn(x , y)

where

K0(x , y) =
∫ ∞

x+y
q(t)dt

Kn+1(x , y) =
∫ y

0
dz
∫ ∞

x+y−z
dtq(t)Kn(t, z)

Thus, we obtain

B(x , y) =
∫ ∞

x+y
q(t)dt +

∫ y

0
dz
∫ ∞

x+y−z
dtq(t)B(t, z), y > 0

Samir Donmazov University of Kentucky

Solving KdV by using Inverse Scattering Transform



Forward Scattering Time-Evolution of Scattering Data Inverse Scattering Soliton Solutions

Appendix: Further Notes on B(x , y)

Note that B(x , y) solves the wave equation

∂2B/∂x∂y − ∂2B/∂x2 + qB = 0

with

−∂B(x , 0+)/∂x = −∂B(x , 0+)/∂y = q(x).

Then,

m(x , k) = 1 +
∫ inf

0
e2ikyB(x , y)dy

where m solves the time-independent Schrödinger Equation

m” + 2ikm
′
= qm
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Appendix: Fredholm Alternative

Theorem: Let A ∈ K(H), then either

1. (A− I )−1 exists or

2. Aψ = ψ has a solution ψ 6= 0 ∈ H.
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