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Associated Schrodinger Equation
The KdV equation is given by

q: — 69gx + Gox =0 (1)
which is related to the modified KdV equation (MKdV)
Ve + 62 vy + Vi = 0 (2)
by
.0 5
e — 648« + Goox = (20 — i) (ve + V2w + Vi)
where

q=v?—iv (3)
is Miura transformation
So, if v(x, t) is a solution of (2), then g(x, t) is a solution of (1).

Since (3) is a Riccati equation, then the Miura transformation can be linearized
by
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Associated Schrodinger Equation (ct'd)

which gives us the Schrédinger equation with zero energy

P
¥

Since the KdV equation is Galilean invariant,

q=-

Pxx + (A +q(x, t))p =0

Gardner, Greene, Kurskal and Miura (GGKM) later discovered that the
Schrodinger equation can be used to to integrate the KdV equation.
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Jost Solutions of the Schrodinger Equation

Consider the KdV equation,

qt —649gx + gxxx = 0

and the associated time-independent Schrédinger equation,

P — (= AP =0

where g = g(x) is a real potential in
= {p00) | [ (1+ xP)lp(x)ldx < o}

Let 11(x, k) and 2(x, k), k € R\ {0} be the solutions of Hyp; = k%1,
j=1,2, where A = k2.
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Jost Solutions of the Schrodinger Equation (ct'd)
Asymptotic to the solutions are
P1(x, k) ~ ™ as x =00, Po(x, k) ~e ™ as x = —o0

Note that as x — £o00, respectively, P1(x, k) and 92 (x, k) are asymptotic to
sums of exponentials

1 ikx R2(k) —ikx

I M T M
1 —ikx Rl(k) ikx

S OLR AC M

where T (k)41 (x, k) describes a plane wave e™ coming from —oco which
transmits Tre’™ to co and reflects Roe™ " to —co. Similarly, T1(k)a(x, k)

describes scattering from co.
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Normalized Jost Solutions

Normalized Jost solutions are defined as
mi(x, k) = e " Pi(x, k), ma(x, k) = e*pa(x, k)
Then the time-independent Schrédinger equation becomes
my + 2ikmél = qgmy,
my — 2ikm/2 = qmy (1)
with m; —1 —0as x —+ocoand my —1 — 0 as —oo.

Converting (1) into an integral equation and solving by Volterra series,

o .
mi(x, k) =1 +/ e2ky By (x,y)dy,
0

0 .
my(x, k) =1 +/ e 2 By (x,y)dy

These representations imply that my, my extend to C*, so m; — 1 € H2t,
my—1€ H?*T.
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Hardy Space

H?* denotes the Hardy space of functions h(k) analytic in (k) > 0 with
sup/ |h(a+ ib)|?da < o
b>0 o0
Boundary values for h(k) € H*t is h(a) = lim¢_,q h(a+ ie) € L?(—00, o)
Note that we us the following FT and IFT convention:

Firy = [ 9 f(y)dy

FHA) == [T e hi(kdk
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Hardy Space (ct'd)

Equivalently, we have the following description,
H?* = {h(k) € L?(—c0,00) | supp F~*{h} C (0,0)}

Similarly, H2~ denotes the Hardy space of functions analytic in &(k) < 0 and
H2= = {h(K) € L2(~c0,9) | supp F~L{h} C (~0,0)}

ht = f{l(oyoo)ffl{h}} and h™ = F{l(,wlo)ﬁ} are operators projecting L2
onto H?T and H?~, respectively. Thus,

2= H** @ H?~
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Scattering Coefficients
Let my(x, k) and ma(x, k) be normalized Jost solutons such that
P1(x, k) = ™ my(x, k) and P2(x, k) = e ®my(x, k) solve the Schrédinger
Equation

—; +ay; = Ky, =12
with 1 ~ e as x — co and o ~ e " as x — —co.

Note that for real k # 0, 1(x, k) and 1 (x, —k) are two linearly independent
solutions since the Wronskian

[1.(x, k), P1.(x, —K)] = 1 (x, k)1 (x, —k) — 1(x, k) iy (x, —k) = const.
= XIi_r)noo ((ik)e"k"e_"kX — e"kx(fik)e_’.kx + 0(1))

Similary, [(2(x, k), P2(x, —k)] = —2ik # 0.
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Scattering Coefficients (ct'd)

So, there are unique functions Ty (k), T2(k), Ri(k), Ra(k), called transmission
and reflection coefficients, such that, for real k # 0

Pt k) = Bk ¢

Tu(k P10+ g e —H)
1l k) = () + ()

In terms of my and mo,

Tl(k)mg(x, k) =

Rl(k)e2ikxm1 (x, k) + m1(x, —k)
To(k)ymi(x, k) =

Ry (k)e 2% my(x, k) + ma(x, —k)
Now, for real k # 0, define the scattering matrix as

(T Rk
= (ml 7H)

£
==
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Scattering Coefficients (ct'd)

Then,
1 1
Tl(k) = 2k [lPl(X' k)rl/J2(X k)] = Tg(k)
s L L)
T} = o a0, (x4
Thus,
Ta(k) = Talk) = T(k) 1)
Ri(k) Ta(—k) + Ro(—k) T1(k) =0 (2)
with
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Scattering Coefficients (ct'd)

From (1),(2),(3), we obtain
[T(K)? + |Ru(K)[> = 1= T (k) > + R (k)

Hence, S is a unitary matrix for each real k # 0.
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Bound States: Norming Constants

Let H be the self-adjoint Schrédinger operator —d?/dx? 4 q(x) with a real
potential g € L%. Then H has finite number of bound states —K,2, << —K%
associated with eigenfunctions f(x, ix;), j=1,---, n. Also, norming constants

are defined by
0 —1
¢ = (/ P (x, fKJ')dX)

Hence, we obtain the scattering data {x;, ¢j, R(k)}, which uniquely determines
the potential u(x, t) for each fixed t.
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Simultaneous Solutions of KdV and Schrodinger equations

Consider the associated Schrédinger equation

P —(g=A)p =0 (1)
where g(x, t) is a solution of the KdV equation

Gt — 64Gx + Grooc =0 (2)

so that ¥(x, t) and A(t) depend on parameter t. Solving (1) for g, then
substituting into (2),

Atl/"z + [IPQX - lpr]X =0 (3)

where

Q = lpt + I,Dxxx - 3((7 + /\)IPX
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Simultaneous Solutions of KdV and Schrodinger Equations
(ct'd)
Assume ¢ vanishes as |x| — co. Then, one can check that the second term of

(3), [$Qx — ¥« Q]«, vanishes on integration over (—oo, c0). Thus, Ay = 0.
Then, (3) becomes

Q 2} =0 4
Fal (4
Integrating (4) twice,

Pt + Prooc —3(q + A)9px = CPp + D¢ (3)

where

4>:¢/;%X2’
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Time-Evolution of Norming Constants

Now, consider time-independent discrete eigenvalues A; <0, j =1,2,...,n,
where corresponding eigenfunctions 1; satisfy (5) .

Note that D = 0 since ; vanishes as |x| — co. Also, C = 0 since ; are
assumed to be orthonormal.

So, substituting y; &~ ¢j(t)e ™™ as x — oo with x; = (—A;)/2 into (5),

¢i(t) = ¢j(0)e™
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Time-Evolution of Scattering Coefficients
For A = k% > 0, solutions of (1) at large |x| are

P~ e 4 R a5 x — o0 (6)
prTe ™ a5 x— —o0 (7)

where T(k,t) and R(k,t) are transmission and reflection coefficients,
respectively. Note that | T|? + |R|? = 1.

Assuming that A is constant, then substituting (6) and (7) into (5), we obtain
D =0 and C = 4ik®, and

R(k, t) = R(k,0)e8*’t
T(k, t) = T(k,0)

Thus, we obtain the time-evolved scattering data,

{Kj. cj(2), R(k, 1)}
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Derivation of Gel'fand-Levitan-Marchenko Equation

Consider the following equation
T (k)yma(x, k) = my(x, —k) + Ry (k)e*™my (x, k) (1)
Subtracting 1 from both sides, let us rewrite the LHS of (1) as
T(k)(ma2(x, k) =1) + T (k) =1 (2)

where T (k) is bounded and analytic in C*, ma(x, k) —1 € H*>* and
T(k)—1€ H?>*

Also, rewrite the RHS of (1) as
(my(x, —k) — 1) 4+ Ry (k)e*™ + Ry (k)e? ™ (my(x, k) — 1) (3)
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Derivation of Gel'fand-Levitan-Marchenko Equation (ct'd)

Now, take the inverse Fourier of the first term in (3) (RHS)

1
FHmi(x,—k) -1} = f/ e (my(x, —k) — 1)dk (1)
7T J—c0
_ l/‘” eZiky/ e 2 B, (x, y')dy'dk
7T J—c0 0
=Bi(x,y), y>0
IFT of second term in (3) gives,
F YR} = F(x+y), y>0 (2)
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Derivation of Gel'fand-Levitan-Marchenko Equation (ct'd)

Third term ...

FYHR(K)e*™ ™ my(x, k) — 1} = /i Fi(x+y+t)Bi(x,t), y >0

and the IFT of (2) (LHS) is
F YT (k)yma(x, k) =1} =0, y >0

Thus, we obtain the Gel'fand-Levitan-Marchenko Equation with no bound
states

B(x,y)+F(x+y)+/0°°F(x+y+t)8(x,t)dt:0, y>0

where F(y) = FTH{R}(y) = % [% R(k)e*™ dk
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Existence and Uniqueness

Consider the time-independent Gel'fand-Levitan-Marchenko Equation.
B(x,y) + Q(x +y) +/°°Q(x+y+t)3(x, Hdt=0 y>0 (1)
where Q(y) = F(y) + /- ¢;(t)e 29 and F(y)% [ R(k)e** dk.
Fix x, and let g(y) = B(x,y), where g € L]0, ). Then, (1) becomes,
)+ely +/ (y +t)g(t)dt =0
Define T(g)(y) =[5~ Q(y + t)g(t)dt such that

Q+(I+T)g=0 (2

Note that T is a Hilbert-Schmidt operator, i.e. Q) € L2(]R), then T is
compact. It can be shown that ker(/ + T) = {0}. Thus, (/ + T)~! exists by
Fredholm alternative. Then (2) has a unique solution, and the solution is

g=—-(+T)0
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n-Soliton Solution
Consider the Gel'fand-Levitan-Marchenko.

B(x,y, t) +Q(x+y, t)+/ooQ(z+y, t)B(x,z,t)dz=0, x <y <oo (1)

where
n
Q(y, t) Z
Fly.t) = R(nt) = o / )& dk
Recover the time-dependent solution of the KdV equation by using
0B(x, x, t)
qlx t) = —2——2"—— (2)
Set R(k, t) = 0 for the n-soliton solution. Let
ca(t)e ™ Y
. co(t)e™
X(x):=[eX e €] Y(y t):=
cn(t)e *ny

Samir Donmazov University of Kentucky



0O®0000000000

n-Soliton Solution (ct'd)

We obtain,
Qx+y.t) =X(x)Y(y, t)

Assume the solution of the Gel'fand-Levitan-Marchenko Equation has the form
B(x,y,t) = H(x,t)Y(y,t) where H(x, t) is a row vector. Substituting into
(1),
[ee]
H(x,t)Y(y,t)+ X(x)Y(y, t) +/ H(x, t)Y(z, t)X(x)Y(y, t)dz =10
X
Then, we obtain,
H(x,t) = —=X(x)T(x,t)"!

where
(o)

T(x,t) = I + / Y(z £)X(2)dz 3)
So,
B(x,y,t) = =X()T(x,£) 'Y (y, 1) (4)
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n-Soliton Solution (ct'd)
Thus,

oo
r,"j = 5’] +/ Ci(t)ei(K"JrKj)Z
X

e~ (KitK;)x+8x3t

:(5U+C,'(0) P
Substituting (4) into (2),
A [X()T(x, 1) 1Y (x, )] _ oer (a [Y(x, )X (x)T(x,t)71] )
dx dx

q(x,t) =2

Note from (3) that

ar(x,t)
Eoan —Y(x, t)X(x)
Therefore,
a[afgi,t)r(xy t)_1] a adetal;(x,t)
q(x.t) = —2tr ( ox o _Zg detT'(x, t)
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One-Soliton Solution

Now, set n = 1,then,

ddetT'(x,t)
Ix

det I'(x, t) N 1+ (cl (O)e_2K1X+8K%t) /(2x1)

—a (O)ef2xlx+8xft

After differentiating (5) with respect to x, let

L 2K1 172
0 := log Ll(o)]

Then, we obtain

q(x, t) = —2k3sech?[k1x — dic3t + 6]
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Appendix: Riccati Equation
The Riccati equation is given by

y () = a2(x)y?(x) + a1 (x)y(x) + a0 (%) (1)
where ax(x) # 0 and ag(x) #O0.

(1) can always be reduced to a second order linear ODE whenever aj is
nonzero and differentiable, then v = yay satisfies a Riccati equation of the form

v (x) = v2(x) + B(x)v(x) + C(x)
where C = a»ag and B = a1 + q/2/q2. Now, substituting v = —u/u,
u' (x) = B(x)u (x) + C(x)u(x) =0 (2)

where a solution of (2) is related to a solution of (1) by y = —u'/(azu).
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Appendix: Integral Equation

Consider the time-independent Schrédinger Equation
m + 2ikm = qgm
Or symbolically,
0x(0x + 2ik)m = gm (1)
To invert the operator (1),we uses the Green's function

t—x . 1 .
Dk(t _ X) _ /O e2ikt gy — ﬁ(emk(tfx) _ 1)

For each k, (k) > 0, we obtain the integral equation

mi(x, k) = 1+ /:o Di(t — x)q(t)ml(t, k)dt
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Appendix: Volterra Series for m(x, k)

Consider the following iteration.
mp(x) =1
oo
mpr1(x, k) =1 —I—/ Dy (t — x)q(t)mn(t, k)dt
X

Thus, we obtain the Volterra Series
m(x, k) =1+ Z gn(x, k)

n=1

gn(x, k) = / Di(x1 — x)q(x1) - - - Di(xn — xp—1)q(xn)dxn - - - dxq
Jx<xg KX,
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Appendix: Volterra Series Convergence
We have

m(x, k) =1+ i gn(x, k)

n=1
where
gn(x, k) = / Di(x1 — x)q(x1) -+ - Di(xn — xn—1)q(xn)dxpn - - - dxq
XX KX

Note that

lgn(x, k)| < /
X<X) - KXy

|
where Dy (y) < 1/]k|, &

Let v(x) == [ |q(t)|dt/|k|. Then, for |k| >0,

X

<e7(x)_1<oo

il gn(n, k)
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Appendix: Volterra Series for B(x, y)

Taking the inverse Fourier transform of

m + 2ikm = qgm

we obtain
9°B/0xdy —9°B/Ix*> +qgB =0

Let

B(x,y) =) Kn(x.y)

n=1

where

Kolx.y) = [ aloyde

xX+y

_y o0
Kniabey) = [ dz [~ dea(t)Kat,2)
0 X+y—z
Thus, we obtain

o0 'y (o]
B(x, y) :/ q(t)dtJr/ dz/ dtq(t)B(t,z), y =0
X+y 0 X+y—z
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Appendix: Further Notes on B(x, y)

Note that B(x, y) solves the wave equation

9°B/dxdy — 9°B/9x>+ qB =0
with

—0B(x,04)/0x = —9B(x,0+)/dy = q(x).
Then,
inf )
m(x, k) =1+ / e?® B(x, y)dy
JO

where m solves the time-independent Schrodinger Equation

m + 2ikm = qm
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Appendix: Fredholm Alternative

Theorem: Let A € C(H), then either
1. (A—1)~! exists or
2. A = 1 has a solution P # 0 € H.
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