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Old problem with a new method.
We recall the problem we solved using the graphic method.

Maximize P = 2x+1.5y s.t. 3x+4y ≤ 1000, 6x+3y ≤ 1200, x , y ≥ 0.

This was the sketch of the feasible region.

The corner points were O(0, 0),A(200, 0),B(120, 160) and
C (0, 250). By checking the function values at the four corner
points we found the maximum value at B.
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Example continued.

We begin by setting up a problem table which will become
useful later.

x y RHS
3 4 1000
6 3 1200
2 1.5

Note that x , y ≥ 0 is not listed, since it is always assumed.
We are listing inequalities which are always assumed to be of
the form ≤ with the last row giving the function coefficients.
We next convert these to equations and write a proper
augmented matrix called a simplex tableau.
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Simplex tableaux.

We introduce new variables called slack variables so that an
inequality 3x + 4y ≤ 1000 is replaced by 3x + 4y + u = 1000
with the understanding that u ≥ 0.
Similarly, the second inequality becomes 6x + 3y + v = 1200
with v ≥ 0.
The maximized function declaration is rewritten as
−2x − 1.5y + P = 0. Note the changes of signs.
This sets up an initial tableau:

x y u v P RHS
3 4 1 0 0 1000
6 3 0 1 0 1200
−2 −1.5 0 0 1 0
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Basic Solution.
The simplex tableau always has a set of unit columns
(columns of the Identity matrix) which exactly fill up an
identity matrix after possible rearrangement.
The corresponding variables on top of these columns are said
to be basic variables and form a basis for the current tableau.
The number of basic variables must be the same as the total
number of rows.
Corresponding to the basis, we have a basic solution to the
current tableau. It is obtained by setting the non basic
variables to zero value and reading off the solutions of the
basic variables from all the equations.
Thus, for our first tableau above, the basis is u, v,P and the
basic solution is:

(x , y, u, v,P) = (0, 0, 1000, 1200, 0).
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Modification of the Simplex tableau.

Note that our original variables (x , y) have values (0, 0) and
thus, this corresponds to the corner point O of our original
feasible region.
If we solve the last equation for its basic variable P, then we
have:

P = 2x + 1.5y

and this says that increasing the values of x or y will increase
the value of P.
Note that this is signified by the negative numbers −2,−1.5
in the tableau.
So we try to make one of them, say x as a basic variable.
This means the x column has to become a unit column.
Where shall it have its 1?
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Choosing a Pivot.

You may try and make the pivot at any available non zero
entry in the x column. However, some choices will produce
negative entries in the last column. This would mean that
the new basic solution will have negative values for some
basic variables. This is not allowed, since by our set up all
the variables have non negative values.
There is a simple test which will guarantee that we won’t get
in trouble.
Check the ratios obtained by dividing non zero entries in the
x-column into the corresponding entries in RHS and choosing
the one which gives a minimum value.
In our example, the choices are 1000

3 and 1200
6 = 200

respectively. Note that we do not use negative entry −2. The
smallest ratio is 200 in the second row.
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The Cleanup Row Operations.

Thus, we use the (2, 1) entry 6 to clean out all entries above
and below.
The row operations R3 − −2

6 R2, R1 − 3
6R2 and finally 1

6R2
produce the following new tableau.

x y u v P RHS
0 5/2 1 −1/2 0 400
1 1/2 0 1/6 0 200
0 −1/2 0 1/3 1 400

Note that the new basis is now x , u,P and hence the new
basic solution is:

(x , y, u, v,P) = (200, 0, 400, 0, 400).
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Continued Pivot Operations.

We note that in terms of x , y variables we are at a point
(200, 0) which was our point A. Thus we have marched from
O to A on our feasible graph. We also have improved our
function value from 0 to 400.
We notice the negative number −1

2 in the function row and
this tells us that it would help to put y in the set of basic
variables. Explicitly, the last equation is P = y

2 −
v
3 + 400, so

y wants to get bigger!
We check the pivot ratios for the second (y) column:

400
5/2 = 160 and 200

1/2 = 400.

Thus the new pivot must be at (1, 1) position.
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Cleanup and end.

The pivot operations are R2− 1
5R1 and R3 + 1

5R1 and produce:

x y u v P RHS
0 1 2/5 −1/5 0 160
1 0 −1/5 4

15 0 120
0 0 1/5 7

30 1 480

The new basic is clearly x , y,P and the new basic solution is:

(x , y, u, v,P) = (120, 160, 0, 0, 480).

Note that this matches our point B in the graph of feasible
points.
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Conclusion.

Note that the last equation is now P = −u
5 −

7v
30 + 480 so the

non basic variables u, v will not increase its value if they
enter the basis.
This is visible since the last row has only non negative
coefficients under the variable columns.
So, we are done!!!
Thus we have a clear strategy called the Simplex algorithm
which we outline next.
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The Simplex Algorithm.

We only consider a simplified set up outlined in the book.
Further complications are reserved for higher level courses.
Thus, we assume that the starting tableau has a basis of
slack variables and the function P with the RHS entries all
non negative. This, in turn means that our maximization
problem has all inequalities of the form ≤, except for the
assumption that all variables are non negative.
If there are no negative entries in the last equation (function
row), then we are done and the current basic solution is the
optimal solution. Our basis always has the function variable
P.
If there is some negative entry in the function row then we
call its column the pivot column.
We turn it into a unit column as described below.
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Algorithm Continued.

Compute the pivot ratios, i.e. the ratios obtained by dividing
positive entries in the pivot column into the corresponding
RHS entries.
Pick the smallest among the ratios and pick the
corresponding entry in the pivot column as the chosen pivot.
Do the standard row operations to make the chosen pivot 1
and all other entries in the pivot column zero.
This has the effect of entering the pivot column variable into
the basis. The old basic variable which had its pivot in the
current pivot row gets kicked out of the basis.
Inspect the new tableau for negative entries in the function
row and continue.
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What can go wrong?

The unbounded case. Several problems can come up during
the above process. The first is that in the pivot column, we
may not have any positive entry to pick as a new pivot. In
this case, it can be shown that our problem is unsolvable
because the feasible region is unbounded and our function
values can grow indefinitely.
It may happen that the chosen pivot has a pivot ratio 0. In
this case, the basis exchange does not increase the function
value. This may continue for several steps so that we may get
into a loop of basis choices.
This does not happen for a small number of variables and is
always accompanied by existence of multiple pivot choices. It
can be shown that if we make random choices among
multiple pivot choices, then the looping can be escaped.
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