Review for Exam 2 - Part II

2 Functions

2.1 The Function Concept

2.1.1 Example

Does the equation $s^3 = 5t - 11$ define t as a function of s?

2.2 Function Notation

2.2.1 Example

Let $f(x) = x^3 - 4$. Find the following:

(a) What is $\frac{f(2) - f(y+1)}{f(1)}$?

(b) What is
$$\frac{f(x+h) - f(x)}{h}$$
?

2.3 Piecewise-Defined Functions

2.3.1 Example

 Let

$$f(x) = \begin{cases} x - 3 & \text{if } x < -2 \\ x^2 + 1 & \text{if } -2 \le x < 5 \\ \sqrt{x - 3} & \text{if } x > 5 \end{cases}$$

- Find f(-5).
- Find f(0).
- Find f(5).

2.4 The Domain of a Function

2.4.1 Example

Find the domain of the following functions.

• $a(x) = x^2 - 2x + 7$.

•
$$b(x) = \frac{x-1}{x}$$
.

•
$$c(x) = \sqrt{x-2}$$
.

•
$$d(x) = \frac{x}{\sqrt{x-1}}$$
.

2.5 Average Rates of Change

2.5.1 Example

Let $f(x) = x^3 - 4x + 3$. Find the average rate of change of f(x) with respect to x as x changes from -2 to 2.

2.5.2 Example

Let $h(x) = 2x^2 - 1$. Find the average rate of change of h(x) on the interval from x to x + h. Assume that $h \neq 0$. Simplify.

2.6 Operations on Functions

2.6.1 Example

Let $f(x) = \sqrt{x-2}$ and $g(x) = x^2$.

- Find (f + g)(6).
- Find (fg)(x).

- Find $\left(\frac{f}{g}\right)(x)$ and its domain.
- Find f(g(3)).
- Find g(f(x)).
- Find f(g(x)).

2.7 Graph Transformations

2.7.1 Example

Let $g(x) = x^2$. Write h(x) in terms of g(x) and explain how you would transform the graph of g.

- $h(x) = (x-1)^2 + 3.$
- $h(x) = 3x^2 1.$

2.8 One-to-one Functions and Inverse Functions

2.8.1 Example

Let
$$f(x) = \frac{x-2}{5}$$
. Find $f^{-1}(x)$.

2.8.2 Example Challenging

Let $g(x) = x^2 + 4$. If g has an inverse function, find a formula for $g^{-1}(x)$. If g does not have an inverse function, can you think of a way to restrict the domain of g so that it does have an inverse function. (*Hint:* Restrict the domain of g(x) so that g(x) would become one-to-one function)