Quiz
$$\# 3$$

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Solve the following inequality, and state your answer in interval notation:

$$(1-x)(x-3)^2 > 0.$$

Solution: First, consider the equality $(1 - x)(x - 3)^2 = 0$, which using the zero product property has solutions x = 1 and x = 3. Now put those values on the number line and determine signs. That's

Thus, the solution to our inequality is an interval $(-\infty, 1)$.

2. (5 points) Find the domain of the following functions. Express your answer in interval notation.

Solution:

- 1. $f(x) = x^3 + \sqrt[3]{x} + x 1$ function doesn't have any division by zero or negatives under the even root, thus the domain is the whole real line, or \mathbb{R} , or $(-\infty, \infty)$.
- 2. $g(x) = \frac{x^2}{x}$ function has a problem with division by zero, thus we have to exclude it from our domain, and domain is $\mathbb{R} \{0\}$ or $(-\infty, 0) \cup (0, \infty)$.
- 3. $h(x) = \sqrt{5-x}$ function has a square root, thus expression under the square root has to be positive that is $5-x \ge 0$ or $5 \ge x$. Thus the domain is $x \le 5$ or $(-\infty, 5]$.
- 3. (5 points) Let

$$f(x) = \begin{cases} x^3 & \text{if } x < 2\\ x + 6 & \text{if } x \ge 2 \end{cases}$$

Solution:

- 1. Find f(0). Since 0 < 2, then $f(0) = 0^3 = 0$.
- 2. Find f(3). Since $3 \ge 2$, then f(3) = 3 + 6 = 9.
- 3. Find f(2). Since $2 \ge 2$, then f(2) = 2 + 6 = 8.

Name: _____

Question:	1	2	3	Total
Points:	5	5	5	15
Score:				