Quiz

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Consider the function

$$f(x) = 2x^{12} + 10x^2 + \sqrt{x+1} + 57.$$

Use the power rule to find the derivative f'(x).

Solution: Notice that we can rewrite our function f(x) as $f(x) = 2x^{12} + 10x^2 + (x + 1)^{1/2} + 57$, and now use the product rule to take the derivative of it. That is,

$$f'(x) = \left(2x^{12} + 10x^2 + (x+1)^{1/2} + 57\right)'$$

= $\left(2x^{12}\right)' + \left(10x^2\right)' + \left((x+1)^{1/2}\right)' + (57)'$
= $2\left(x^{12}\right)' + 10\left(x^2\right)' + \left((x+1)^{1/2}\right)' + (57)'$
= $2 \cdot 12x^{11} + 2 \cdot 10x + \frac{1}{2}(x+1)^{1/2-1} + 0$
= $24x^{11} + 20x + \frac{1}{2\sqrt{x+1}}$.

2. (5 points) Find the derivative, g'(x), if $g(x) = \sqrt[7]{x^2 + 6x + 7}$.

Solution: Notice that we can rewrite our function g(x) as $g(x) = (x^2 + 6x + 7)^{1/7}$, and now use power rule and chain rule to take a derivative of it. That is,

$$g'(x) = \left(\left(x^2 + 6x + 7 \right)^{1/7} \right)'$$

= $\frac{1}{7} (x^2 + 6x + 7)^{1/7-1} \cdot (x^2 + 6x + 7)'$
= $\frac{1}{7} (x^2 + 6x + 7)^{-6/7} \cdot (2x + 6)$
= $\frac{2x + 6}{7 \cdot \sqrt[7]{(x^2 + 6x + 7)^6}}.$

Name:				
Section (circle one): 021	022	023	024

Question:	1	2	Total
Points:	5	5	10
Score:			