Quiz

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Suppose $f(x) = 2x^2 - 4x - 5$. Find the intervals on which f(x) is increasing and the intervals on which f(x) is decreasing.

Solution: Remember that a function g is increasing on the interval where g'(x) > 0 and is decreasing on the interval where g'(x) < 0. Thus, we need to take a derivative of our function f(x) first and then find solutions(intervals) for the inequalities f'(x) > 0 and f'(x) < 0. Let us take derivative of f(x) first, that is

$$f'(x) = 4x - 4,$$

and now look at the inequalities f'(x) > 0 and f'(x) < 0,

$$f'(x) > 0 \iff 4x - 4 > 0 \iff x > 1,$$

and
$$f'(x) < 0 \iff 4x - 4 < 0 \iff x < 1.$$

Thus, our function f(x) is increasing on the interval $(1, +\infty)$ and decreasing on the interval $(-\infty, 1)$.

2. (5 points) Find the value of x on the interval [-1,4] at which $f(x) = 2x^2 - 4x - 5$ (same as above) attains its minimum. Be sure to justify your answer.

Solution: By the work above and the first derivative test, we see that f(x) attains its minimum at x = 1. Alternatively, using only f'(x) from above, the only critical number of f is 1 and f(-1) = 1, f(1) = -7, and f(4) = 11, so we again conclude that f(x) attains its minimum at x = 1.

Name:				
Section (circle one):	021	022	023	024

Question:	1	2	Total
Points:	5	5	10
Score:			