Quiz

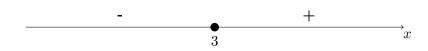
Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Suppose $f(x) = x^4 - 12x^3 + 5$. Find the intervals on which f(x) is increasing and the intervals on which f(x) is decreasing.

Solution: Setting $f'(x) = 4x^3 - 36x^2 = 4x^2(x-9) = 0$, we can find critical numbers which are x = 0 and x = 9.

if
$$x < 0$$
: $f'(-1) = 4(-1)^2(-1 - 9) = -40 < 0$
if $0 < x < 9$: $f'(1) = 4(1)^2(1 - 9) = -32 < 0$

if
$$x > 9$$
: $f'(10) = 4(10)^2(10 - 9) = 400 > 0$.


Now as f'(x) is negative when x < 0 and 0 < x < 9, so f(x) is decreasing on the interval $(-\infty, 0) \cup (0, 9)$, and f(x) is increasing in the interval $(9, \infty)$.

2. (5 points) Find the intervals on which $g(x) = x^3 - 9x^2 + 6x + 5$ is concave up and the intervals on which g(x) is concave down.

Solution: To find the interval on which g(x) is concave up and concave down. We need to check the sign of the second derivative. Note that: g''(x) = 6x - 18 = 6(x - 3) = 0 when x = 3.

if
$$x < 3 : g''(0) = 6(0-3) = -18 < 0$$
,

if
$$x > 3 : g''(4) = 6(4-3) = 6 > 0$$
.

So g(x) is concave up on the interval $(3, +\infty)$, and g(x) is concave down on the interval $(-\infty, 3)$.

Name:				
Section (circle one):	021	022	023	024

Question:	1	2	Total
Points:	5	5	10
Score:			

MA 123 Page 2 of 2