Quiz

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Use the fundamental theorem of calculus to find F'(x) for

$$F(x) = \int_0^{x^2 - 3x + 1} \sqrt{5t - 4} \, dt$$

Solution: By fundamental theorem of calculus

$$F'(x) = \sqrt{5(x^2 - 3x + 1) - 4} \cdot (x^2 - 3x + 1)'$$

= $\sqrt{5(x^2 - 3x + 1) - 4} \cdot (2x - 3).$

2. (5 points) Recall that the average value of a function f(x) on [a, b] is

$$f_{\text{avg}} = \frac{\int_{a}^{b} f(x) \, dx}{b-a}.$$

Suppose that the average value of f(x) on [4, 26] is 5. Find the value of $\int_{4}^{26} f(x) dx$.

Solution:

$$5 = \frac{\int_{4}^{26} f(x) \, dx}{26 - 4} \implies \int_{4}^{26} f(x) \, dx = 22 \cdot 5 = 110.$$

Name:				
Section (circle one):	021	022	023	024

Question:	1	2	Total
Points:	5	5	10
Score:			