Quiz #1

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. (5 points) Let $f(x) = x^2 - 10x + 9$, complete the square, then find the roots of f.

Solution: First, let's complete the square, that is

$$f(x) = x^{2} - 10x + 9$$

= $x^{2} - 2 \cdot x \cdot 5 + 25 - 25 + 9$
= $(x - 5)^{2} - 16$.

And now if we want to find the roots of f, we have to set it to 0, that is f(x) = 0 and solve for x. It is much easier to use the completed square version of $f(x) = (x - 5)^2 - 16$, when we try to find roots. Because

$$f(x) = (x-5)^2 - 16 = 0$$

((x-5)-4)((x-5)+4) = 0
(x-9)(x-1) = 0
x-9=0 \rightsquigarrow x=9 \text{ or } x-1=0 \rightsquigarrow x=1.
Thus, the roots are $x=1$ and $x=9$.

2. (5 points) Find the inverse functions, $f^{-1}(x)$, of $f(x) = 2x^{1/3} - 5$.

Solution: To find the inverse function of f(x), we are going to let y = f(x), therefore, $f(x) = y = 2x^{1/3} - 5$, then swap x and y variables, and solve again for y. That's

$$y = 2x^{1/3} - 5$$

now swap x and y

$$x = 2y^{1/3} - 5$$
$$\frac{x+5}{2} = y^{1/3}$$
$$\left(\frac{x+5}{2}\right)^3 = y.$$

Thus

$$f^{-1}(x) = \left(\frac{x+5}{2}\right)^3 = \frac{(x+5)^3}{8}.$$

Name: _____

Section (circle one): 003 004

Question:	1	2	Total
Points:	5	5	10
Score:			