Quiz #10

Directions: Carefully read each question below and answer to the best of your ability in the space provided. You **MUST** show your work to receive full credit!

1. Consider the difference equation:

$$x_{n+1} = x_n^2$$

(a) (3 points) Find the fixed point(s) of the difference equation.

Solution: Assume that $\lim_{n\to\infty} x_n = \hat{x}$. To find the fixed points we need to solve the following equation $\hat{x} = \hat{x}^2$.

So using factoring we get

$$\hat{x} = \hat{x}^2 \quad \Longleftrightarrow \quad \hat{x}(\hat{x} - 1) = 0,$$

thus $\hat{x} = 0$ or $\hat{x} = 1$, two fixed points.

(b) (2 points) Identify the fixed point(s) as locally stable or unstable.

Solution: Notice that our difference equation has the form $x_{n+1} = f(x_n)$ where $f(x) = x^2$. Thus using stability criterion we can determine where or not our fixed points are stable. So f'(x) = 2x and $|f'(0)| = 2(0) = 0 < 1 \implies \hat{x} = 0$ is locally stable fixed point, $|f'(1)| = 2(1) = 2 > 1 \implies \hat{x} = 1$ is locally unstable fixed point.

2. (5 points) Find f(x) given that

$$f'(x) = x^2 + e^{2x}, \quad f(0) = 0.$$

Solution: So the anti-derivative of f'(x) is

$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}e^{2x} + C$$

Don't forget about C. Then let's using initial condition f(0) = 0 to determine C, that is

$$0 = f(0) = 0 + \frac{1}{2} + C,$$

thus $C = -\frac{1}{2}$. Finally,

$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}e^{2x} - \frac{1}{2}$$

Name: _____

Section (circle one): 003 004

Question:	1	2	Total
Points:	5	5	10
Score:			