Definition

A graded poset P with a minimal and maximal element, denoted $\hat{0}$ and $\hat{1}$ respectively, is *Eulerian* if for all $x < y \in P$ we have

$$\sum_{x \leq z \leq y} (-1)^{rk(z)} = 0$$

Equivalently if $\mu(x, y) = (-1)^{rk(y) - rk(x)}$.

Examples include

- face lattices of polytopes
- face posets of regular CW spheres
- intervals in the Bruhat orders of Coxeter systems
- the lattices of regions of oriented matroids
The uncrossing poset

- rank $\binom{n}{2} + 1$
- $(2n - 1)!! + 1$ elements
- nth Catalan number many atoms

Theorem (Lam)

The uncrossing poset is Eulerian.

Theorem (Hersh-Kenyon)

The uncrossing poset is shellable, moreover it is a CW poset.
A lattice is a poset \mathcal{L} in which for all $x, y \in \mathcal{L}$ there exists a least upper bound or join $(x \lor y)$ and greatest lower bound or meet $(x \land y)$. In other words the join and meet satisfy:

\[
x \lor y \geq x, y \quad \text{and} \quad z \geq x, y \Rightarrow z \geq x \lor y
\]
\[
x \land y \leq x, y \quad \text{and} \quad z \leq x, y \Rightarrow z \leq x \land y
\]

A join irreducible of a lattice is an element which covers exactly one element.

Let $\text{irr}(\mathcal{L})$ denote the set of join irreducibles of \mathcal{L}.
Definition

A set X is a generating set for a lattice \mathcal{L} if

- $\hat{0}_\mathcal{L} \in X$
- for all $\ell \in \mathcal{L}$, $\ell = x_1 \lor \ldots \lor x_k$ for some $x_i \in X$

Denote the lattice generated by X as $\langle X \rangle$.

Definition

Let \mathcal{L} be a lattice with generating set $\mathrm{gen}(\mathcal{L})$, and $I \subseteq \mathrm{gen}(\mathcal{L}) \setminus \{\hat{0}_\mathcal{L}\}$.

- The contraction of \mathcal{L} by I is $\mathcal{L}/I = \langle j \lor \bigvee_{i \in I} i : j \in \mathrm{gen}(\mathcal{L}) \rangle$.
- The deletion of \mathcal{L} by I is $\mathcal{L}\setminus I = \langle \mathrm{gen}(\mathcal{L}) \setminus I \rangle$.

A minor of \mathcal{L} is a lattice with generating set which is obtained from \mathcal{L} by some sequence of deletions and contractions.

For a minor M denote the generating set by $\mathrm{gen}(M)$.
\[\mathcal{L} = \langle \hat{0}, 1, 2, 3, 4 \rangle \]

\[\mathcal{L} \setminus 1 = \langle \hat{0}, 2, 3, 4 \rangle \]

\[\mathcal{L} / 1 = \langle 1, 12, 13, 1234 \rangle \]

\[(\mathcal{L} / 1) \setminus (1234) = \langle 1, 12, 13 \rangle \]
Proposition

Let G be a vertex labelled graph and $\mathcal{L}(G)$ its lattice of flats.

Simple vertex labelled minors of $G \leftrightarrow$ minors of $\mathcal{L}(G)$

The bijection is $H \mapsto \mathcal{L}(H)$.
William Gustafson (U. of Kentucky) Lattice minors and Eulerian posets April 13, 2021 11 / 26
The poset of minors

Definition

Let \mathcal{L} be a lattice with generating set. For minors of \mathcal{L} define a partial order by

$$M_1 \leq M_2 \text{ if and only if } M_1 \text{ is a minor of } M_2$$

Let $M_\mathcal{L}$ be the poset of minors of \mathcal{L} together with a minimal element denoted \emptyset.
Some basic results

Proposition

- The atoms of \(M_L \) are the elements of \(L \).
- \(M_L \) is graded by \(\text{rk}(M) = \# \text{gen}(M) \).
- The rank 2 elements of \(M_L \) are minors \(\langle x, x \lor i \rangle \) where \(x \in L \) and \(i \in \text{gen}(L) \) such that \(i \nleq x \).
- \(M_L \) is thin (every rank 2 interval has 4 elements)

Proposition

Let \(L \) be a lattice and \(\text{gen}(L) = \{ \hat{0}_L, \ell_1, \ldots, \ell_n \} \). Let \(\theta : B_n \to L \) be defined by \(\theta(X) = \bigvee_{x \in X} \ell_x \).

The minors of \(L \) are given by \(\langle \theta(X) : X \in \text{irr}(I) \cup \{ \hat{0}_I \} \rangle \) where \(I \) is an interval of \(B_n \).

In particular the minors of \(B_n \) are the intervals.
Some basic results

Proposition

Let \mathcal{L} be a lattice with $n + 1$ generators. The interval $[\langle \hat{0} \rangle, \mathcal{L}]$ in $M_\mathcal{L}$ is isomorphic to B_n. The subposet of $M_\mathcal{L}$ consisting of contractions of \mathcal{L} is isomorphic to \mathcal{L}^*.

Proposition

1. The minor poset M_{B_n} is isomorphic to the face lattice Q_n of the n-dimensional cube.

2. Let C_n be the length n chain. The minor poset M_{C_n} is isomorphic to B_{n+1}.

$$C_3 = \langle \hat{0}, 1, 2, 3 \rangle \quad C_3 \setminus 1 = \langle \hat{0}, 2, 3 \rangle \quad C_3/1 = \langle 1, 2, 3 \rangle$$

$$
\begin{array}{c}
\hat{0} \\
\downarrow \\
1 \\
\downarrow \\
\hat{0} \\
\end{array}
\begin{array}{c}
\hat{0} \\
\downarrow \\
2 \\
\downarrow \\
3 \\
\end{array}
\begin{array}{c}
\hat{0} \\
\downarrow \\
2 \\
\downarrow \\
3 \\
\end{array}
$$
PL spheres

Definition

Given a poset P the *order complex* $\Delta(P)$ is the simplicial complex consisting of all chains in P.

A poset P is said to be a *PL sphere* if there is a piecewise linear homeomorphism from $\Delta(P \setminus \{\hat{0}, \hat{1}\})$ to the boundary of a simplex.

Examples:

- Face lattices of polytopes
- Intervals of Bruhat orders [Reading]

Theorem (?)

If P is a PL sphere then every interval of P is a PL sphere.
The zip operation

An element \(z \in P \) is said to be a zipper if

- \(z \) only covers two elements \(x \) and \(y \)
- \(\{ p \in P : p < x \} = \{ p \in P : p < y \} \)
- \(z = x \lor y \)

\(\text{zip}(P, z) \) is the poset obtained from \(P \) by identifying \(x, y \) and \(z \).
The zip operation preserves Eulerianness and PL sphericity.
The main theorem

Theorem

Let \mathcal{L} and \mathcal{K} be lattices with generating sets such that there is a join preserving surjection from \mathcal{L} onto \mathcal{K} which descends to a surjection from $\text{gen}(\mathcal{L})$ onto $\text{gen}(\mathcal{K})$.

The poset of minors $M_\mathcal{K}$ can be obtained from $M_\mathcal{L}$ by a sequence of zip operations.

Corollary

For any lattice \mathcal{L} with generating set the poset of minors $M_\mathcal{L}$ is Eulerian and a PL sphere.
Proof.

- \(f : \mathcal{L} \to \mathcal{K} \) join preserving,
 \(f(\text{gen}(\mathcal{L})) = \text{gen}(\mathcal{K}) \)
- View \(f \) as a congruence via \(x \equiv y(f) \iff f(x) = f(y) \)
- Define a partial order on edges \((x_1 < y_1) \leq (x_2 < y_2) \iff x_1 = x_2 \lor z \) and \(y_1 = y_2 \lor z \).
- \(\equiv \) preserves joins if and only if the edges \(x < y \) with \(x \equiv y \) form a lower order ideal
Proof.

- $F : M_L \to M_K$ \(F(\langle X \rangle) = \langle f(X) \rangle \)
- Nontrivial fibers of F are M, M_x, M_y where
 - $x, y \in \text{gen}(M)$
 - $M_y = M \setminus y$
 - $M_x = \begin{cases} M/y & x = \hat{0}_M \\ M \setminus x & x \neq \hat{0}_M \end{cases}$
- Each M is a zipper when these are zipped rank by rank
The cd-index

Let P be a rank $n + 1$ poset with $\hat{0}$ and $\hat{1}$. Let a and b be noncommutative variables.

Definition

Let C be a chain in P which contains $\hat{0}$ and $\hat{1}$. Define $w(C) = w_1 \cdot \ldots \cdot w_n$ by

$$w_i(C) = \begin{cases} b & \text{if } C \text{ goes through rank } i \\ (a - b) & \text{if } C \text{ does not go through rank } i \end{cases}$$

Definition

The *ab-index* of P is the polynomial

$$\Psi(P) = \sum_{C} w(C)$$

If $\Psi(P)$ is a polynomial in $c = a + b$ and $d = ab + ba$ then this polynomial is the *cd-index* of P (also denoted $\Psi(P)$).
The cd-index continued

Theorem (Bayer-Billera)

If P is an Eulerian poset then it has a cd-index.

Example

Let $P = B_3$.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\emptyset < 123$</td>
<td></td>
<td></td>
<td>$(a - b)^2$</td>
</tr>
<tr>
<td>$\emptyset < 1 < 123, \emptyset < 2 < 123, \emptyset < 3 < 123$</td>
<td></td>
<td></td>
<td>$b(a - b)$</td>
</tr>
<tr>
<td>$\emptyset < 12 < 123, \emptyset < 13 < 123, \emptyset < 23 < 123$</td>
<td></td>
<td></td>
<td>$(a - b)b$</td>
</tr>
<tr>
<td>$\emptyset < 1 < 12 < 123, \emptyset < 1 < 13 < 123, \emptyset < 2 < 12 < 123$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\emptyset < 2 < 23 < 123, \emptyset < 3 < 13 < 123, \emptyset < 3 < 23 < 123$</td>
<td></td>
<td></td>
<td>b^2</td>
</tr>
</tbody>
</table>

$$\Psi(B_3) = (a - b)^2 + 3b(a - b) + 3(a - b)b + 6b^2$$

$$= a^2 + 2ba + 2ab + b^2 = c^2 + d$$
The cd-index continued

Theorem (Karu)

The cd-index of a Gorenstein* poset has nonnegative coefficients. In particular the cd-index of an Eulerian spherical poset is nonnegative.

Theorem (Reading)

Let $z \succ x, y$ be a zipper in P, with $z \neq \hat{1}$. If P is Eulerian then

$$\Psi(zip(P, z)) = \Psi(P) - \Psi([\hat{0}, x]) \cdot d \cdot \Psi([z, \hat{1}])$$

Remark

If $z = \hat{1}$ then $\Psi(P) = \Psi(zip(P, z)) \cdot c$
A corollary to the main theorem

Corollary

Let \mathcal{L} and \mathcal{K} be lattices with generating sets such that there is a join preserving surjection from \mathcal{L} onto \mathcal{K} which descends to a surjection from $\text{gen}(\mathcal{L})$ onto $\text{gen}(\mathcal{K})$.

The following inequality on cd-indices is satisfied coefficientwise.

$$\Psi(M_K) \cdot c^\# \text{gen}(\mathcal{L}) - \# \text{gen}(\mathcal{K}) \leq \Psi(M_\mathcal{L}) \leq \Psi(Q_n)$$

Example

Let $\mathcal{L} = \langle \hat{0}, a, b, c \rangle$ as before.

$$\Psi(M_\mathcal{L}) = c^3 + 2cd + 3dc$$

$$\Psi(M_{B_3}) = c^3 + 4cd + 6dc$$