next up previous
Next: About this document ... Up: formulas Previous: Trigonometry

Derivative Formulas

  1. If $c$ is a constant, then $D_x(c)=0$. Moreover, $D_x(cy)=cD_x(y)$.


  2. \begin{displaymath}D_x(y+z) = D_x(y)+D_x(z).\end{displaymath}

  3. For any real $n$,

    \begin{displaymath}D_x(y^n) = ny^{n-1}D_x(y).\end{displaymath}

    As a special case:

    \begin{displaymath}D_x(x^n) = nx^{n-1}.\end{displaymath}


  4. \begin{displaymath}D_x(yz) = D_x(y)z + yD_x(z).\end{displaymath}


  5. \begin{displaymath}D_x(f(g(x))=f'(g(x))g'(x).\end{displaymath}

  6. Linear approximation formula: Linear approximation to $f(x)$ at $x=a$ is:


    \begin{displaymath}L(x)=f(a)+f'(x)(x-a).\end{displaymath}

  7. Newton's Method for finding a root. Change the current guess $x_n$ to

    \begin{displaymath}x_{n+1}=x_n - \frac{f(x_n)}{f'(x_n)}.\end{displaymath}



Avinash Sathaye 2007-08-09