next up previous
Next: Derivative Formulas Up: formulas Previous: Geometry.

Trigonometry


  1. \begin{displaymath}\tan(x)=\frac{\sin(x)}{\cos(x)},\cot(x) = \frac{\cos(x)}{\sin(x)},
\sec(x)=\frac{1}{\cos(x)},\csc(x)=\frac{1}{\sin(x)}.\end{displaymath}


  2. \begin{displaymath}\sin^2(x)+\cos^2(x)=1, \sec^2(x)=1+\tan^2(x),\csc^2(x)=1+\cot^2(x).\end{displaymath}


  3. \begin{displaymath}\sin(x + y)=\sin(x)\cos(y)+\cos(x)\sin(y).\end{displaymath}


  4. \begin{displaymath}\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y).\end{displaymath}


  5. \begin{displaymath}\tan(x+y) = \frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}.\end{displaymath}


  6. \begin{displaymath}\cos(-x)=\cos(x), \sin(-x)=-\sin(x).\end{displaymath}


  7. \begin{displaymath}\cos(2x)=\cos^2(x)-\sin^2(x)=2\cos^2(x)-1 = 1-2\sin^2(x).\end{displaymath}


  8. \begin{displaymath}\sin(2x)=2\sin(x)\cos(x).\end{displaymath}


  9. \begin{displaymath}\cos(\frac{x}{2}) = \pm \sqrt{\frac{1+\cos(x)}{2}}.\end{displaymath}


    \begin{displaymath}\sin(\frac{x}{2}) = \pm \sqrt{\frac{1-\cos(x)}{2}}.\end{displaymath}

    The signs need to be fixed by the position of the locator point $P(\frac{t}{2})$.


  10. \begin{displaymath}\frac{\sin(A)}{a}=\frac{\sin(B)}{b} = \frac{\sin(C)}{c}
\leqno{\mbox{\bf Sine Law}}.\end{displaymath}


  11. \begin{displaymath}a^2=b^2+c^2-2bc\cos(A)
\leqno{\mbox{\bf Cosine Law}}.\end{displaymath}



Avinash Sathaye 2007-08-09