next up previous
Next: Power series Up: formulas Previous: Complex numbers.

Finite series formulas.

  1. Arithmetic series.

    \begin{displaymath}a+ (a+d) + \cdots +(a+(n-1)d) = \sum_1^n (a+(i-1)d) =
\frac{n(2a+(n-1)d)}{2}.\end{displaymath}

  2. Geometric series formula.

    \begin{displaymath}a+ ar + \cdots ar^{n-1} = \sum_1^n ar^{i-1} =a \frac{1-r^n}{1-r}.\end{displaymath}

  3. Telescoping series formula. If $g(x)=f(x)-f(x-1)$, then


    \begin{displaymath}\sum_1^n g(i) = f(n)-f(0).\end{displaymath}

  4. Sums of powers.


    1. \begin{displaymath}\sum_1^n 1 = \frac{n(n+1)}{2}.\end{displaymath}


    2. \begin{displaymath}\sum_1^n i = \frac{n(n+1)}{2}.\end{displaymath}


    3. \begin{displaymath}\sum_1^n i^2 = \frac{n(n+1)(2n+1)}{6}.\end{displaymath}


    4. \begin{displaymath}\sum_1^n i^3 = \frac{n^2(n+1)^2}{4}.\end{displaymath}


    5. \begin{displaymath}\sum_1^n i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}.\end{displaymath}



Avinash Sathaye 2007-08-09