next up previous
Next: Geometry. Up: formulas Previous: Finite series formulas.

Power series

  1. Geometric series

    \begin{displaymath}\sum_0^\infty ax^i = a+ ax + ax^2 +\cdots = \frac{a}{1-x} \mbox{ where $\vert x\vert<1$ }.\end{displaymath}

  2. Exponential series

    \begin{displaymath}\exp(x) = \sum_0^\infty x^i =
1+ x + \frac{x^2}{2!}+\cdots +\frac{x^n}{n!}+\cdots
\mbox{ for all $x\in \Re$ }.\end{displaymath}

  3. Basic Trigonometric series


    \begin{displaymath}\sin(x) = \sum_0^\infty (-1)^i\frac{x^{2i+1}}{(2i+1)!}
= x -...
...x^3}{3!} + \frac{x^5}{5!} - \cdots \mbox{ for all $x\in \Re$ }.\end{displaymath}

  4. Generalized Binomial series

    \begin{displaymath}(1+x)^n = \sum_0^\infty {}_nC_i x^i = \sum_0^\infty
\frac{(n)(n-1)\cdots (n-i+1)}{i!} x^i \end{displaymath}

    where $\vert x\vert<1$ or $n$ is a non negative integer and $x$ is any complex number.

  5. Log series

    \begin{displaymath}\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} +\cdots +
(-1)^...
...n+1} + \cdots
\mbox{ where $x$ is real with $\vert x\vert<1$}.\end{displaymath}

  6. Arctan series

    \begin{displaymath}\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots +
(-1)^n\frac{x^{2n+1}}{2n+1} + \cdots \end{displaymath}

    where $x$ is real with $\vert x\vert<1$.

  7. Arcsine series

    \begin{displaymath}\arcsin(x) = x+\frac{1}{2}\frac{x^3}{3}
+\frac{(1)(3)}{(2)(4)}\frac{x^5}{5}
+\frac{(1)(3)(5)}{(2)(4)(6)}\frac{x^7}{7}+\cdots \end{displaymath}

    where $x$ is real with $\vert x\vert<1$.



Avinash Sathaye 2007-08-09