Research

I am mostly interested in hyperbolic PDEs with applications to General Relativity.

Publications

H.Lindblad, M.Tohaneanu: A local energy estimate for wave equations on metrics asymptotically close to Kerr Ann. Henri Poincare 21 (2020), no. 11, 3659--3726. Link
D.Dmitrishin, A.Stokolos, M.Tohaneanu: Search for cycles in non-linear autonomous discrete dynamical systems New York J. Math. 25 (2019), 603--626. Link
H. Lindblad, M. Tohaneanu: Global existence for quasilinear wave equations close to Schwarzschild Comm. Partial Differential Equations 43, no. 6 (2018), 893 --944. Link
J. Metcalfe, D. Tataru, M. Tohaneanu: Pointwise decay for the Maxwell field on black hole space-times Adv. Math. 316 (2017) , 53--93. Link
D.Dmitrishin, A.Khamitova, A.Stokolos, M.Tohaneanu: Finding cycles in nonlinear autonomous discrete dynamical systems Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory 2 (2017), 199--237. Link
P. Laul, J. Metcalfe, S. Tikare, M. Tohaneanu: Localized energy estimates on Myers-Perry space-times SIAM J. Math. Anal. 47, no. 3 (2015), 1933--1957. Link
H. Lindblad, J. Metcalfe, C. Sogge, M. Tohaneanu,C. Wang: The Strauss conjecture on Kerr black hole backgrounds Math. Ann. 359, no. 3-4 (2014), 637--661. Link
J. Metcalfe, D. Tataru, M. Tohaneanu: Price's Law on Nonstationary Spacetimes Adv. Math. 230, no. 3, (2012), 995--1028. Link
M. Tohaneanu: Strichartz estimates on Kerr black hole backgrounds Trans. Amer. Math. Soc. 364, no. 2 (2012), 689--702. Link
D. Tataru, M. Tohaneanu: Local energy estimate on Kerr black hole backgrounds Int. Math. Res. Not., (2011), no. 2, 248--292. Link
J. Marzuola, J. Metcalfe, D. Tataru, M. Tohaneanu: Strichartz estimates on Schwarzschild black hole backgrounds Comm. Math. Phys. 293, no. 1 (2010), 37--83. Link

Preprints

K. Datchev, J. Metcalfe, J. Shapiro, M. Tohaneanu: On the interaction of metric trapping and a boundary arXiv:2008.05408 Link
S. Looi, M. Tohaneanu: Scattering for the defocusing critical wave equation on perturbations of Minkowski arXiv:1912.06795 Link